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Abstract

Life-critical applications warrant a higher level of software reliability than has yet
been achieved. Since it is not certain that traditional methods alone can provide
the required ultra-reliability, new methods should be examined as supplements or
replacements. This paper describes a mathematical counterpart to the traditional

process of empirical testing.
ORA's Penelope verification system is demonstrated as a tool for evaluating the

correctness of Ada software. Grady Booch's Ada calendar utility package, obtained

through NASA, was specified in the Larch/Ada language. Formal verification in the

Penelope environment established that many of the package's subprograms met their

specifications. In other subprograms, failed attempts at verification revealed several
errors that had escaped detection by testing.

Keywords

Life-critical software, ultra-reliability, form&l methods, formal specification,
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Preface

This report provides computer science professionals with a demonstration of

Penelope, ORA's program verification system for producing highly reliable Ada

components. The reader familiar with the Ada language will find the document

self-explanatory. No prior knowledge is required of program verification in gen-
erM or Penelope in particular: the basic concepts of program verification are

explained before they are applied.

From this document, the reader should obtain a basic understanding of the
capabilities and methods of the Penelope system when used as a counterpart

to testing. The reader should also see that evaluating completed software is
only one of many possible applications of program verification. The reader

who wishes to explore the possibilities is directed to the suggestions for further

reading.

vii





Summary

Ultra-reliable software for life-critical aerospace applications is NASA's goal.

Specifically, the FAA proposes a probability of 10 -9 of catastrophic failure dur-
ing one service hour. Conventional software development methods have not by

themselves produced ultra-reliable software. Several fly-by-wire s_cstems now
in service have failed catastrophically. Improvements to conventional methods

need to be investigated. Promising alternative approaches deserve examination

as well. Formal verification applies the power and precision of mathematics

to the development of life-critical software, in !uch a way that software can

be unambiguously specified and conclusively prQved to meet its specifications.
ORA has developed Penelope, a computerized system for formally verifying Ada

software. This report demonstrates penelope's capabilities.
NASA provided ORA with Grady Booch's Calendar_Utilities, a commer-

cially released utility package, suitable for navigational uses. The package fea-

tures several convenient representations of time and date and manipulations of

them. ORA formally specified Calendar_Utilities using the Larch/Ada math-

ematical specification language. ORA formally verified Calendar_Utilities
using the Penelope verification environment.

Formal specification provided an unambiguous description of every subpro-
gram in the package. Informal analysis then uncovered dubious software and

three outright errors. Formal verification determined the status of eleven repre-

sentative subprograms. Successful proofs demonstrated nine subprograms to be

correct. In two subprograms, failed attempts at verification_ revealed additional

errors in human blind spots.

Penelope is an effective, prototype tool which holds promise for producing
ultra-reliable Ada software. As ORA continues development, Penelope will be-
come even more effective.

"IX





1 Introduction

As the complexity of life-critical computer applications increases and the reliance

placed upon these applications grows, software developers will have to attain

higher levels of reliability than have been possible to date. Since it cannot be
foreseen whether today's software practices will scale up to meet the challenge,

alternative approaches need to be examined. One promising approach is the

use of formal verification to prove mathematically that software is correct. This

paper demonstrates that the formal approach is practical for the evaluation of

existing software.

1.1 The Challenge: Ultra-Reliability

Nowhere are computerized life-critical systems more pervasive than in aerospace.

Today, there are aircraft that cannot be controlled without computer assistance.

In the future, there will be vehicles flown completely by computer. It is imper-
ative that their software be correct.

The Federal Aviation Authority [4] has proposed a very ambitious standard

for flight safety: a probability of 10 -9 of catastrophic failure during a one-hour
flight. Meeting this standard would effectively eliminate risk from flight. The

probability of a fatal failure during 1000 years' worth of consecutive independent

one-hour missions would be less than one percent.

Can the FAA's goal be achieved? The proposed ultra-reliability is several

orders of magnitude from what has ever been attained for aircraft with purely
human control. Computerized assistance, at the least, will be required if the

FAA's goal is to be met. Ultra-reliable software will be needed for life-critical

applications, but it is not at all clear that conventional software development
methods alone are capable of its production.

1.2 The Conventional Approach

For a system to behave reliably, its developers must know what constitutes
correct behavior: a specification I is necessary. Traditional English-language

specifications of the intended behavior of the software suffer from the imprecision

and ambiguity inherent in natural language. Consequently, misunderstandings
and resultant errors are common. Ultra-reliability has never been attained for

software specified by traditional means.

But suppose that developers could attain ultra-reliability by some modifica-
tion of traditional methods. How would they convince an impartial skeptic that

they had done so? The faith of the developers in their product is not sufficient.
Certification is not a matter of faith, but of demonstration.

1By specification in this report, we mean a description of what the software does. If we
intend the Ads Reference Manual's sense of specification, we use the phrase Ads specification.
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Conventional demonstrations of reliability depend heavily on empirical test-

ing, a costly and time-consuming process that is never fully completed. Testing

can conclusively demonstrate the existence of a particular error, but cannot

demonstrate the general absence of all errors. Prolonged testing of software of

any real complexity will continually reveal flaws for as long as tests are carried
out. Error-free software is approached, at best, only asymptotically by testing. _

The conclusions from testing about reliability are therefore drawn in terms of

probability. Techniques are available that enable extrapolation from relatively

short tests to probabilistic predictions of relatively long intervals of failure-free

operation; however, these techniques do not scale up gracefully to encompass
intervals of thousands of years. An alternative to empirical testing is the formal

approach.

1.3 The Formal Approach

By applying mathematics to the specification and demonstration of correctness

of software, great advances in reliability are possible. The use of a formal spec-

ification language brings the clarity and precision of mathematical logic to the

description of the software's intended behavior. Formal specifications provide
the user and the implementer with an unambiguous means of communication.

Formal verification is a mathematicM counterpart to empirical testing. The

verifier proves mathematically that software meets its specifications in all cases,

rather than testing particular cases. Where testing is specific, verification is gen-

eral. The tester removes flaws from software one by one. The verifier develops
software free from flaws.

A leader in formal methods, the ORA Corporation has developed the Pene-

lope [8, 14, 16] verification system for specifying and verifying Ada software.

Using Penelope, computer science professionals can ensure that software is of

the highest reliability. This paper demonstrates how.

1.4 Demonstrating the Formal Approach with Penelope

NASA Goddard Space Flight Center and NASA Lewis Research Center fur-
nished ORA with samples of Ada software. From these samples, we chose

a demonstration case: Grady Booch's Calendar_Utilities, 3 a commercially

available software package. We formally specified the subprograms of the pack-

age in the Larch/Ada language, then formally evaluated the correctness of the

software using the Penelope editor. We verified that many of the subprograms

are correct, but also uncovered errors in the software during both the specifica-
tion and verification efforts.

21n practice, in correcting one error, the developer risks introducing others.

3Copyright Grady Booch, part of the Ads Booch components 1984-1992.
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1.4.1 The Evaluated Software

Calendar_Utilities is an extension of the basic Calendar package built into

Ada, and employs Calendar, along with several other packages, by means of
with clauses. The data types of Calendar_Utilities provide several natural

representations for time and date, including string representations. The sub-

programs of the package convert from one representation of time to another,

extract specific information (such as day of the week) from a time value, and

perform arithmetic on time values. Calendar_Utilities encapsulates a rich

set of manipulations of dates between 1901 and 2099.

1.4.2 The Specification

We used the Larch/Ada specification language to state fully and precisely the

intended behavior of each of the subprograms in the package. On the basis

of the specifications, we informally examined and evaluated the software. We

detected outright errors, dubious features, and hidden assumptions.

1.4.3 The Verification

In the second phase, we selected subprograms from the package to evaluate

within the Penelope Ada verification environment. We proved several subpro-

grams to be correct; we showed others to be incorrect. We confirmed some
errors we had detected earlier, during the specification phase, and detected

other errors. The nature of the newly found errors was telling: they had evaded

earlier detection. Penelope uncovered these errors because the formal approach

is rigorous and mathematical.

1.5 Structure of the Document

Section 2 is a self-contained overview of program verification in the Penelope

system; the overview is provided for readers with no prior exposure to formal

methods. Before discussing the demonstration of Penelope in detail, we de-

scribe the subject of the demonstration. Section 3 explains the software that

was evaluated, the package Calendar_Utilities. In Section 4 we demonstrate

formal specification and verification in Penelope. We draw our conclusions in
Section 5.

Appendix A describes related work. Appendix B is the glossary for this pa-

per. Appendix C contains the original text of the package Calendar_Utilities.
For convenient reference, Appendix D contains the text of the built-in Ada lan-

guage Calendar package as it appears in the Ada Reference Manual. Finally,

Appendix E contains the full Ada and Larch/Ada text of the software, specifi-
cation, and verification performed with Penelope.
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2 Overview of the Penelope System

2.1 Basics of Formal Specification and Verification

Every software developer reasons about program semantics. When writing soft-
ware, the developer considers, usually on a very informal level, what consti-

tutes correct behavior and how to make the software behave correctly. Some-

times, however, developers reason semi-formally about the behavior of software

through thought experiments in which programs are "executed" with paper and
pencil.

Consider the familiar three-step swap of x and y:

1; := X;

x := y;
y := t;

The following symbolic execution shows that the software does indeed inter-

change the values of the variables x and y. The intermediate values between

execution steps reveal the action of the software.

t := X;

X := y;

y := t;

X : _init Y : Yinit

X : _init Y : Yinit t "- Zinit

• _ Yinil Y = Yinil t -" Zini|

X = Yinit y : Xinit t = Xinit

A formal verifier reasons much the same way, but does so at the level of

mathematical rigor, working within a mathematical model of computation for
the computer language.

In the first step of formal specification and verification, the verifier uses

the mathematical language of the model to describe the intended semantics

of the software (what the software should do). This description is the formal

specification. Next, the verifier analyzes the software within the model to derive

the actual semantics (what the software actually does); this analysis is the first

step of the formal verification. In the final step of the verification, the verifier

uses formal mathematical proofs to show that the actual semantics are the

intended semantics; that is, that the software does what the software developer

intended. We elaborate on each of these steps in the following subsections.

2.1.1 Formal Specification

Formal specifications of software are written in a formal language having a

precisely defined syntax and semantics. The principal benefits of formal speci-
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fication are the following:

• Formal specifications explicitly state all underlying assumptions.

• Formal specifications can be stated at a high level of abstra_:tion.

• Formal specifications provide unambiguous descriptions.

• Formal proofs of correctness are possible.

• Formal specification and the subsequent formal verification allow enhanced

confidence for critical systems.

The fundamental notion of program semantics is that of change of state;

that is, the alteration of data. To specify a program formally is to describe

mathematically how it transforms one state into another. We describe the

states of a transformation by means of assertions, mathematical statements
about those states.

We assume that a program is called in an initial state, performs a set of
instructions, and terminates. 4 Executing the program transforms an initial sys-

tem state into a final state: program variables that hold certain values in the

initial state may acquire new values in the final state, information in external

storage is changed through I/O, and so on. We could completely describe the se-

mantics of terminating programs by giving an exhaustive list of all possible pairs

of initial system states and the final states into which the software transforms
them.

An exhaustive description of program semantics would be similar to the

complete description of a mathematical function by the list of all ordered pairs

(z,f(z)) of its arguments and values. The complete listing is fully adequate,

but a formula for f(z) is vastly preferable. For most purposes, the advantages

of the formula f(z) = z 2 over the list (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), ...
are obvious.

Likewise, a symbolic way to relate possible initial states to possible final

states is vastly preferable to a mere listing of pairs of states. The symbolism most
often used in the theory of formal verification to relate initial states, software,

and final states is the Floyd-Hoare triple [12], a kind of assertion. The triple

{precondition} S {postcondition }

symbolically states that the software S transforms the system from an initial

state in which the assertion precondition holds to one in which the assertion

postcondition holds.

In this notation, the swap example above is described by:

{x = zi.. AND y = Yi.i,} S {x = yi.i, AND y = zi..}

4We are specifically excluding programs that are intended to run indefinitely, such as

operating systems, I/O repeaters, and so on.
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The triple asserts that S, the software that performs the swap, transforms

any given initial state in which • = zinit and y = Y_nit into a final state in which

x = Vini* and y = z_ni,. The triple above is a specification for the swap S.

Ftoyd-Hoare triples have the same advantages for specifying program se-

mantics that formulas have for defining functions. Instead of listing all possible
behaviors separately, we can describe the entire collection of permissible behav-

iors symbolically.

2.1.2 Formal Verification

Having made a specification of the intended semantics in terms of pre- and

postconditions,

{precondition} S {postcondition }

the verifier mathematically analyzes the software for correctness. Analyzing for

correctness is the process of formally determining whether S is, in fact, a state

changer that brings about postcondition whenever precondition is initially true.

The two parts to this process are predicate transformation and proofs.

Predicate Transformation The first part of formal verification is a kind of

symbolic execution known as predicate transformation. 5 Similar to paper-and-

pencil execution in reverse, predicate transformation works from postcondition,

the stated goal of the software, back to the essence of what must be true before

S is executed. Predicate transformation calculates the weakest precondition,

i.e., the most general (hence, weakest in the logical sense) precondition that
is certain to be transformed by S into postcondition. * The notation for the

weakest precondition is

wp( S, postcondition )

The weakest precondition is the precondition in the Floyd-Hoare triple that
describes the actual semantics of S:

{wp( S, posteondition) } S {postcondition }

Any state satisfying wp(S, postcondition) will be transformed by the action of S

into a state satisfying postcondition. By calculating the weakest precondition,
the verifier derives the actual semantics of the software within the mathematical

model.

Let us return to the example of the three-step swap S as specified above.

Reading from the bottom up, here are the intermediate and ultimate results

of predicate transformation of postcondition through S. As a careful reading

Sin mathematical parlance, the precondition and postcondition are predicates on the states.

6The expert in formal methods will note that, as Larch/Ads specifications are partial

correctness specifications, we are actually interested in the "weakest liberal precondition";

and, in addition, our predicate transfortmers compute an approximation to the weakest liberal

precondition. For the purposes of this discussion, these distinctions can be ignored.
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shows, at each intermediate step, predicate transformation has calculated what

must be true if the remaining code is to establish postcondition.

{Y = Yi_, AND x = z_,,} wp(S, posteondition)

t := X;

{y= u_..AND t = =_..} (2)
I := y;

{x = yi,_. AND t = zi..) (1)

y := t;

{x = Yi,_it AND y = zi,_it} postcondition

Formal Proof The second part of formal verification is the demonstration

that the calculated actual semantics agree with the specified intended semantics.

When the specified precondition logically implies the calculated weakest pre-

condition, the semantics do agree. The specified precondition will be true in

every initial state allowed by the specification. From the logical implication, it

follows that the weakest precondition will also hold in every initial state allowed

by the specification. From the definition of weakest precondition, it follows that

S brings about the postcondition in the final state, as desired. Thus the actual
behavior is the intended behavior.

The formula relating the specified and weakest preconditions is the verifica-
tion condition or VC:

precondition ---, wp( S, postcondition )

Proving the verification condition verifies the software.

To illustrate, we show the VC of the three-step swap above:

(• = zi,,, AND y = Yioit) _ (y -- Yinit AND • = Zinit )

Since the conclusion of the VC differs from the hypothesis only by rearrange-

ment, the VC is easy to prove. The software is formally verifiable.

Summary

The specified precondition and postcondition describe the intended be-
havior of the software.

• Predicate transformation is symbolic execution for the purpose of deter-
mining the actual semantics of the software.

• The logical formula connecting the actual semantics and the intended

semantics is the verification condition (VC).

• Proving the VC shows that the software's actual semantics are the in-
tended semantics.
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2.2 Formal Specification in Larch/Ada

We have described, in general, formal specification using Floyd-Hoare triples.

This section outlines formal specification using the Larch/Ada language. Larch/

Ada consists partly of an adaptation of the Floyd-Hoare notation, and partly of

a means for defining mathematical vocabulary. Its written form is designed to
be readable by the Penelope verification environment. In this section, we show

a Larch/Ada specification as it looks in Penelope.

2.2.1 Mathematics and Programming

There are both mathematical and programming expressions in a Fioyd-Hoare
triple. In a triple

{precondition} S {postcondition }

the statement S is written in a programming language (in this case Ada), while

the precondition and postcondition are written in the specification language (in
this ease Larch/Ada).

Although some programming languages are mathematically oriented, they

are not purely mathematical. The essential difference is that programming

languages are executable while mathematical language is descriptive.

Consider for example the Ada operation + and the mathematical operation
+. The ada expression x + y invokes a computation that may return a value,

but may also raise a numeric exception if the arguments are too large. The

mathematical expression z + y, on the other hand, is completely descriptive: it

simply denotes the sum of the values of the variables. The Ada expression is an
instruction; the mathematical expression is a description.

In Larch/Ada, as in all specification languages in the Larch [10] family,

the distinction between the two languages is carefully maintained. Larch/Ada
cleanly separates mathematical and programming concerns. Mathematics is

done in a language in which terms have their ordinary mathematical meanings

Programming is done in Ada, where expressions have their ordinary computa-
tional effects.

2.2.2 The Two-Tiered Approach

Larch/Ada, following the the Larch paradigm, has two major divisions or tiers:

one for pure mathematics, one for an interface between mathematics and pro-
gramming. The mathematical tier defines the mathematical vocabulary used in

the specification. The interface tier specifies the behavior of programs.

The Mathematical Tier In the mathematical tier we employ the Larch

Shared Language, common to the entire Larch family, to group together decla-

rations of kinds of mathematical objects, declarations of functions, and defini-

tions of objects and functions into collections called traits. In a trait, we first
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declare s0rts--collections of abstract mathematical objects. There are sorts

of integers, of lists, of stacks, of queues, of trees, and so on. We next de-
clare the functions that operate on the sorts. Examples of functions from the

sort of stacks are push, pop, top, and so on. We then define the functions

mathematically with axioms and lemmas. An example is the axiom on stacks,

pop(push(element, St)) : element.

The Interface Tier In the interface tier, we use the Larch/Ada interface

language to describe the correspondence between the mathematical and pro-

gramming realms. Part of the correspondence is built into Larch/Ada. Ada

types are based on the Larch sorts modeling them. That is, Ada objects of a

given type take their values in the corresponding Larch sort. For instance, Ada

type integer is based on the mathematical integers of Larch sort Int. The set

of all possible values of the type form a subset of the sort. The possible values

of Ada type integer range from minint to maxint within sort Int, which is
infinite.

Two-Tiered Specification Building on this foundation, we specify the soft-

ware. There are special idioms for specifying the values of objects, for specifying
the conditions that must hold when a program is called, for specifying what will

be true upon normal exit, and for specifying the circumstances under which

exceptions will be propagated and the consequences of doing so.

An example of the interplay of the two tiers is shown below in the Larch/
Ada specification of fact, an Ada function to compute factorials. In Penelope,

Larch/Ada appears as Ada commentary, set off with "--I". The specification
below shows a Larch trait, the Ada function, and the pre- and postconditions

of the triple after the function.

TRAIT T IS

INTRODUCES

factorial: Int-> Int;

AXIOMS: FORALL [m:Int]

fO: factorial(O) = 1;

fplus: (m > O) -> (factorial(m) = m,factorial(m-l));

END AXIOMS;

LEMMAS:

END LEMMAS;

FUNCTION fact(n : IN integer) RETURN integer;
--I WHERE

--] IN (n>=0);

--I RETURN factorial(n);
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-- l EID WHERE;

Trait T, appearing before the Ada function, introduces the mathematical

factorial function, then defines it through axioms f0 and fplas.
Note that because we use the ASCII character set for machine-readable

Larch/Ada, our mathematical language looks somewhat like a programming
language. There is no possibility for confusion, however, if the reader bears in

mind that the "--I" marker precedes mathematical notation.

The vocabulary newly defined in trait T is used in the Larch/Aria interface,
between "WHERE" and "EIID WHERE".

The Ill annotation gives the precondition of fact: the value of the argument
n must be non-negative.

The RETURN annotation gives the postcondition: the value returned by the
function must be factorial(n).

Note: While Larch/Aria has idioms for side-effects on globals, and for ter-
mination by propagating exceptions, those idioms do not appear here. Their

absence means that fact must have no side effects and must not terminate
exceptionally. 7

2.2.3 Summary

• Larch/Ada cleanly separates mathematical and programming concerns.

• The Larch/Ada mathematical tier provides the mathematical vocabulary
for the interface tier. :.

• The Larch/Aria interface t_ier makesexpiicit Connections between math-

ematics and programming, specifying program behavior in mathematical
terms.

7This statement is almost Correct as it stands. Please see the discussion of correctness in
Section 4.4.1.
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2.3 Formal Verification in Penelope

We have described, in general, formal verification using predicate transformation

and proofs of VCs. This section outlines formal verification using the Penelope

system. In this section, we show how we use Penelope to evaluate a piece of
software.

2.3.1 Computer-Assisted Verification

Penelope is an environment for verifying Ada programs. From Ada input and

Larch/Aria specifications, Penelope automatically performs the predicate trans-

formations, calculating the pre- and postconditions and producing verification
conditions. The verifier then uses Penelope's built-in proof editor to prove the
VCs.

The entire process is interactive and incremental. Any user of a spread-

sheet will find Penelope's approach familiar. The verifier edits the software, the

specifications, or the proofs. Each change is propagated throughout the file by

predicate transformation. Viewing the recalculated results, the verifier makes

another change. The process continues until the verifier has proved all the VCs.

The final product is verified, legal Ada code.

2.3.2 Lareh/Ada in Penelope

As we mentioned in the last section, Larch/Ada appears in a Penelope file as

Ada commentary, set off by the special mark "--I'. Likewise, displayed pre-

conditions, VCs, and proofs are Ada commentary. Thus the output of Penelope

will always be a legal Ada program and verified output will be a correct Ada

program.

2.3.3 Evaluating Existing Software

Proving Correctness When we use Penelope to verify an existing Ada pro-

gram, we must add our Larch/Ada specifications to the Ada program. As we do

so, Penelope interactively computes and displays the VCs that we must prove.

When we have proved them, we have formally proved that the software meets

its specification.

Detecting Errors When we cannot prove program VCs, it may be because
the software does not meet its specification or because we simply have not

thought of the correct approach to the proof.

However, when the software is incorrect, we can usually find out by exam-

ining the proofs. Having located an error this way, we may confirm it with

a special-purpose test run of the software. Penelope augments testing, rather

than replacing it. Formal verification can demonstrate correctness; testing can
demonstrate incorrectness.
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Below, we show how we used Penelope to evaluate two versions of the Ada

procedure swap: one correct, one incorrect. Both versions have the same speci- .
fication:

PROCEDURE swap(x, y : IN OUT integer)
--[ WHERE

--[ OUT ((x=IN y) AND (y=IM x));
--1 END WHERE;

If we had wanted to restrict the initial state, we would have explicitly speci-

fied the precondition with an Ii annotation. Not giving one implicitly specifies

a precondition of TRUE. Since TRUE holds in any state, we are allowing any initial
state for swap.

With the Larch/Ada OUT annotation, we are specifying that the final value

of x is the initial value of y, and vice versa.

It is trivial to verify the correct version. The completed proof of the VC fol-

lows the specification, set off by the marker "--!'. The computed precondition
of the procedure body is also set off this way.

--! Verification status: Verified

PROCEDURE good_s.ap(x, y : IN OUT integer)
--[ WHERE

--l OUT ((x=IN y) AND (y=IN x));
--[ END WHERE;

--! VC Status: proved

--! BY synthesis of TRUE
--_ [3

IS

t : integer;

BEGIN

--! PRECONDITION = ((y=IN y) AND (x=IN x));

t:=x; = =

x:=y;

y:=t;

END swap;

After we entered our specification, Penelope calculated the precondition of

the procedure body, and from the precondition, Penelope calculated the VC.

Since x = IN • in the initial state (and likewise for y) Penelope was able to
simplify the VC to TRUE before displaying it for proof. We prove¢[ t_e trivial

VC immediately. Since the proof is completed, Penelope does not display the
VC.

We may locate the error in the incorrect version by inspecting the VC:
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--! Verification status: Not verified

PROCEDURE bad_swap(z, y : IN 0t?r integer)

--I WHERE

--I OUT ((x=IN y) AND (y=IN x));

--I END WBEP.E;

--! VC Status: ** not proved **

--! >> (x=y)

--! <proof>
--g C]

IS

t : integer;

BEGIN

--! PRECONDITION = ((x=IN y) AND (x=I| x));

t:=X;

y:=t;

x:=y;

END swap;

Having no assumptions about x and y in general, we could not prove the VC.

Looking at the code, we saw that the equation x = y arises _om the incorrect
order of the assignments. The program will always set x and y to the same

value: namely, IN x.

2.3.4 Summary

• The user of Penelope enters Ada software and Larch/Ada specifications.

• Penelope computes preconditions and VCs.

• The user edits proofs of the VCs. Penelope checks the proofs for correct-

heSS.

• When all VCs are proved, the Ada software is verified.

• Unprovable VCs are evidence of errors.
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3 Test-Case Software

So that we could demonstrate formal specification and verification in Penelope
on actual software, rather than artificial examples, NASA furnished ORA with

a commercially obtained copy of Grady Booch's Calendar_Utilities pack-

age. This package provides several convenient ways to represent and manip-

ulate times and dates between the years 1901 and 2099 A.D., going consid-
erably beyond what is built into the Ada language. The full Ada text of

Calondar_Utilities appears in Appendix C. Here, we describe the package
conceptually.

3.1 Data Types

Dates and times are expressed in units of years, months, days, hours, minutes,
seconds and milliseconds.

A date can be expressed two ways. The first is by giving the year, the month,
and the day of the month. The second is by giving the year and the day within

the year. Both (1991, February, 2) and (1991, 33) express the same date.

The expressions of date and time are represented by three kinds of data type:
numeric, enumerated, and string.

3.1.1 Numeric Representations

There are two explicit numeric representations of date and time, and one implicit
representation of date.

• Type Time

This record type represents a date and time by year, month, day, hour,

minute, second, and millisecond.

• Type Interval

This record type represents passage of time in units of days, hours, min-

utes, seconds, and mill!seconds. .........

• Year and Day (Implicit)

Several functions of the package have the_year and the_year_day in their
argument lists to represent the date.

3.1.2 Enumerated Representations

Names of the months and days of the week are represented by enumeration
types.
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• Type MonthJame

(January, February, March, April, May, June, July, August, September,

October, November, December)

• Type Day_llame

(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday)

Note that the week is unconventionally listed from Monday instead of its

first day, Sunday. This unconventionality can lead to confusion in reading the

code of the package unless it is kept in mind.

3.1.3 String Representations

Dates and times represented by strings can each have two formats.

• Date

- Full (US standard)

Example: "14arch 2, 1991"

- Month-Day-Year

Example: "03/02/91"

• Time

- Full (hours, minutes, seconds, milliseconds, am/pm)

Example: "01 : 23 :4S : 67 pro,,

- Military (24 hour clock)

Example: "13 : 23 : 4S : 67"

3.2 Operations

There are two categories of operations on data types: extractors of information

and converters between representations. We give informal, English descriptions

of the operations here. We formally specify them in Section 4.2.2.
When two or more functions share a name, we briefly indicate in a paren-

thetical comment what kind of argument each function takes.

3.2.1 Extracting Information

• Is_Leap_Year

This Boolean function tells whether a given year is a leap year.

• Days_In (Year)

This function calculates the number of days in a given year.
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• Days_In (Month)

This function calculates the number of days in a given month.

• Day_l:lf (Year, Day)

This function calculates the day of the week of a given year-day pair.

• Day_[If (Time) ....

This function calculates the day of the week of a date and time given in

the representation of type Ti_e.

• Period_Of

This function tells whether a given date/time is a.m. or p.m.

3.2.2 Converting Between Representations

• Month_0f (Month Number)

This function converts the representation of months from numeric to enu-
merated.

Month..0f (Month Name)

This function converts the representation of months from enumerated to
numerical.

• Time_Of (Year, Day)

This function converts dates from the year-day representation to the Time

representation.

• Ti_e_0f (Time)

This function converts time from the Calendar_Utilities Time represen-

tation to the built-in Ada Calendar. Ti_e representation.

• Time_0f (Calendar.Time)

This function converts time from the built-in Ada Calendar. Time repre-

sentation to the Time representation.

• DateTmage_O_

This function converts dates from the Time representation to a string

representation.

• Value_nf (Date/Time Strings)

This function converts date and time from a string representation to the

Time representation.



3.2 Operations 17

• Durat ion_Of

This function converts time from the Interval representation to the built-

in Ada Duration representation.

• Interval_Of

This function converts time from the built-in Duration representation to

the Interval representation.

• Image_Dr

This function converts time from the Interval representation to a string

representation.

• Value_Of (Interval String)

This function converts time from a string representation to an Interval

representation.
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4 A Demonstration of the Penelope System

ThiS section describes our formal verification of the Calendar_Utilities pack-

age using Penelope. First, we present an overview of the demonstration. Next,
we describe the specifics of the formal specification. Last, we give a complete
account of the formal verification.

4.1 Overview of the Demonstration

During the first phase of this project, we developed Larch/Ada specifications for
every subprogram in the Calendar_Utilities package, s These specifications

provided the context for informal mathematical discussion of the correctness of

the subprograms. We noted in the interim report that most of the subprograms

appeared to be correct, but that three subprograms were suspect.

In the second phase of this project, we used the Penelope Ada verification

environment to investigate correctness formally. Our intention was to give a

full, mathematically sound treatment of as much of the Ada code as was feasible

with the resources available. We largely accomplished our intentions, but we
must state some reservations. We found that, even on a Sun SPARCstation 9, a

verification of the entire package at one time was beyond the current capabilities

of Penelope.
The bookkeeping information for each individual verification was kept in

the buffer at at all times, seriously slowing the editor. The upcoming version of

Penelope solves this problem, supporting libraries of verified components. After

we verify a function, we will be able to store its verified text in a library and

eliminate the bulk of its text from the buffer. Any time we need information

about the function, we will retrieve it from the library.

We were also hampered by Penelope's incomplete support for strings. Pene-

lope supports only unconstrained arrays and does yet not have string literals.

We acknowledged both limitations and narrowed our scope to those subpro-

grams in the package that do not involve strings. Six subprograms of twenty
involve strings; of the remaining fourteen, we treated eleven in complete detail.

To perform the verification, we needed to expand both the Ada and the

Larch/Ada text beyond what we presented in the interim report. These ex-
pansions were in three categories: additional specified Ada code required for a

complete verification; additional theoretical facts; and additions and modifica-

tions to the Ada code necessary to circumvent limitations of Penelope.

The specification required enlargement. There are several dependencies in
Calendar_Utilities involving many calls to subprograms in other packages. To

represent formally the effect of these calls within Penelope, we needed to specify

the called subprograms. For each package upon which Calendar_Utilities

SCopyright Grady Booch, part of the Ada Booch components 1984-1992.

9Sun is a trademark of Sun Microaystems, Inc. SPARCstation is a trademark of SPARC

International, Inc.
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depends, we needed an (Ads) package specification, fully specified in Larch/
Ads.

We also had to enlarge the mathematical theory under which we verified
Calendar_Utilities. Our specification included several facts of arithmetic that

are not built into Penelope and had to be explicitly stated in the traits. Among

these traits are certain facts about modular arithmetic, rational numbers, etc.

The last expansion included additions and modifications to the Ads code.
Most of the modifications to the verified Ada code were slight. One example

is the translation of FOR loops into WHILE loops. Penelope will support FOR

loops in the next release. Another example involves type conversion. Because

Penelope does not currently support type conversion, we wrote special-purpose
Ads functions whose annotated effect is to convert objects of one type into

objects of another. The major modification was our treatment of the fixed-

point type durat£on as a rational number type, constructed as a record. The
reasons for this modification are described below in Section 4.4.1.

The formal treatment of Calendar_Utilitien was the largest undertaking

yet for Penelope: 2938 lines 1° of code, annotation, and verification, of which 441
lines were Ada code. Both the specification and verification phases of the project

have demonstrated their value in assuring correctness and detecting errors in

actual Ads programs.

l°before reformatting for this report
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4.2 Specification

In Section 2, we described the general aspects of formal specification and the

Larch/Ada language, in this secti0n, We discuss Larch/Aria traits further, and

we present detailed specifications of the Calendar_Utilities subprograms.

4.2.1 Mathematical Preliminaries

The specification of a program is written in the context of a logical theory

defined by a single main trait, in which all of the mathematical vocabulary is

introduced and defined. In a modular fashion, the main trait is built up from

smaller component traits. Any trait may include another trait as a component,

using a facility much like the Ada with facility for library unit dependencies. In

this section, we describe the various component traits used for the specification.

Component traits comprise two classes: a class of traits that the system

implicitly generates in response to the Ada text, and a class of traits that the
user explicitly constructs.

System-GeneratedTralts Just as an Ada:pr0gram runs within the envi-

ronment of the pa_age standard, the main L_rc_h--tralt implicitly includes (as
though with an include statement) a standard trait that defines Ada's built-in

data types. The standard trait defines the following: the integer sort Int and

its associated operations (+, *, etc.); the enumeration sort AdaBoo] with its

literals (TRUE, FILSV.) and its operations (AID, OR, 10T, etc.); and other basic

sorts, objects, and operations. Ada type integer is based on Larch sort Int,
boolean is based on tdaBool, and so on. This standard trait essentially gives

the theory governing Ada package s_emdard.

In addition to the standard trait, the system implicitly generates other traits
to provide the abstract data sorts on which Ada's constructed types are based,

together with the theory of those sorts. For example, if a user declares the Ada

type

TYPE color IS (red, amber, green);

the system implicitly generates a Larch/Ada trait and implicitly includes the

trait in the main trait for the Ada program. This trait makes available a new

enumerated sort on which to base color, together with the theory that makes
it the proper enumerated sort.

In general, when a type T occurs in a program, Penelope creates the sort on

which T is based. The mathematical operations on the sort use similar syntax

to Ada operations on T, and so can be understood with little difficulty.

The Penelope system generates an internal name for each sort it creates. For

example, the internal name for the sort on which the enumeration type color
is based, is essentially a listing of all its enumeration literals

(red, amber, green)
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Since such internal names can become unwieldy, we have added notational ex-

tensions to Larch by which the user may introduce more convenient names for

these sorts. A full description of implicitly generated traits and our notational

extensions to Larch is given in ORA Technical Report TR 89-34 [7].

User-Constructed Traits The user can construct traits to gain additional

expressiveness or convenience. For example, in specifying Calendax_Utilities,
we constructed traits to introduce new sorts, to give convenient names to exist-

ing sorts, to define conversion factors between time units, and to define various

auxiliary functions from one time representation to another.
Traits contain both axioms and lemmas. The axioms express the theory

in the form best suited to mathematical exposition. The lemmas encapsulate

essential facts of the theory in a form best suited to proving VCs. In construct-

ing our traits, we tried to write the axioms and lemmas in a style that appeals

directly to people's usual understanding of the calendar. For example, when

specifying the predicate ii_leap_yeax, our aim was to provide a more straight-
forward notion of a leap year than the code for that function can provide and a

more clearly stated specification than dense mathematics would provide.

Current Limitations of Traits in Penelope While the mathematical the-

ory underlying Penelope is mature and adequate for formal verification, Pene-

lope itself is still being developed. Consequently, we had two limitations on

traits as input.

The first limitation is Penelope's syntax for traits. The Penelope syntax
for traits is an extract of and somewhat different from the syntax in the Larch

manual, although most of the differences are minor, reflecting the embedding of

traits as commentary in Ada code.

The other limitation involves sortchecking of the logical language. Penelope's

sortchecking is still being developed. The present sortchecking is too lenient,
which means that the user must perform some of the sortchecking manually,

exercising care not to present certain kinds of ill-sorted terms to Penelope. Only

record terms concerned us directly in verifying Calondar_IJtilities.

Currently, Penelope has only one record sort, inygecordSort, and treats

all record fields as naming components of this most general record sort. Since

Ada record types are based on Larch/Ada record sorts, the user must never
employ the same field name in two distinct record types, for otherwise, there

would be an invalid overloading of the corresponding Larch record field name.

We respected this limitation in defining record types.

Penelope effectively turns off sortchecking when treating record components,

assigning them the most general sort AnySort, thus discarding information
about their actual sorts. Consequently, sortchecking finds apparent ambigui-

ties in perfectly unambiguous record terms. If a function g is overloaded, there

may be no way for Penelope to determine the proper sort of g(R.f)
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For instance, in Calendar_Utilities, we have the sort fixnum representing

rational numbers. We overload multiplication, so that Penelope has both these

signatures in its symbol table: ......

"*" : Int, Int-> Int

"*" : Int, fixnum-> fixnum

As a result, Penelope treats the following equation as ambiguous:

(i*m).numer = i*(m.numer)

The term on the left of the equation may have any sort, so the target sort of
the second * might be either Int or fixama. The sort of re.miner can be either

Int or fixnma. Thus, Penelope cannot determine which signature to use.

To direct the sortchecker in these cases, we remove the apparent ambigu-

ity, employing id_entity fun_ti0_/S-f/b_ given sorts to themselves. Applying an

identity function informs the sortchecker of the sort of the argument term while

preserving the term's mathematical value. We can unambiguously write the
formula as follows:

(i.m) .nmaer = Int_identity(i*(at. nmaer))

Now, the only choice of signature for * is the first signature

"*" i Int, Int-> Int

Summary of the Traits The full text of the Penelope verification output for

Calendar_Utilities given in Appendix E be_s with six traits that we wrote

in order to carry out the verification. Here is a brief summary of each trait.

Trait Z

Many, but not all, facts of arithmetic are built into Penelope. Trait Z
contains additional facts about division and modular arithmetic. This

trait also has an explicit identity function on the integers, which is useful

for removing ambiguities during sortchecking.

Trait fixed_point

The theory of fixed point numbers is not yet built into Penelope. We use

this trait to provide needed facts.

Trait sort_names

In this trait, we give all of the names of sorts that we later use to de-

fine the vocabulary of the Larch/Ada specification. The Ada types of
Calendar_Utilities are based on the sorts of this trait. Some sorts have

a "good" predicate that asserts that a given value within the sort is a
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legitimate representation of a date and time. The "_tic_" functions rep-
resent the values of Ada attributes. The trait also defines miscellaneous

arithmetic and sort-forcing functions.

We introduce the enumeration sort century in order to provide the vocab-

ulary to document that the Ada function Value nf provided in package

Calendar_Utilities is correct only for argument dates in the twentieth

century:

SORT century IS (teentieth, twentyfirst)

Without century terms, we would be unable to express mathematically

that "02/27/55" might refer equally well to 1955 or 2055.

We also assign names, or aliases, to the sort Int. Penelope permits one

or more aliases for a sort, which may be used to make the mathematics
clearer and Penelope easier to use. Aliases are especially useful for clarity

when several Ada types are based on the same mathematical sort.

In the mathematical tier of this trait, we define the integers only once. All

integer types and subtypes are based on the single infinite sort Int. Each

type determines a subset of Int, over which its values range.

Hence the years, months, etc., of C_lendax_Utilities are all based on

the sort Int. To declare the signatures of our mathematical functions

clearly, it is helpful to use the following aliases:

SORT years IS Int
SORT months IS Int

SORT month_days IS Int

SORT year_days IS Int

SORT absolute_days IS Int
SORT hours IS Int

SORT minutes IS Int

SORT seconds IS Int

SORT milliseconds IS Int

This signature declaration from trait time_representations

day_of_year: years, months, month_days -> year_days

shows clearly what th'e _values in the arguments mean, whereas

day_of_year: Int, Int, Int -> Int

would be unenlightening.

There are many other aliases of this clarifying nature in sortmames. Sep-
arate from them is the alias
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catu ALIASES Int

We will use this alias later when we introduce a very short, but unspecified,

unit of time, the catn (Calendar Atomic Time Unit). Catus relate the

abstract time values from the implementation of Calendar.time to the
time values of C_lendar_Utilities. time.

The abstract sort Calendar.t_e_sort may have a smaller granularity

than the millisecond: we do not know. By choosing to work with the small

but unspecified catu, we do not have to know. We require of the catu

only that it be positive and of sufficiently small granularity to represent

faithfully times expressed in either setting. We treat it as an unspecified

positive integer constant in the remainder of the specification.

Trait conversion_factors

This trait defines the functions for converting from hours to seconds, days
to milliseconds, etc.

Trait time_representations

This trait encapsulates the theory of the individual time representations.

We concentrate on extracting information from time values of the sort

Time..sort on which the type Time of Calendar_Utilities is based. For

instance, we find the number of days in a given month in a given year

through the function days_in_month.

We also define predicates that indicate whether formal time values repre-

sent possible times: good_year, good ,neath, good_montLday, and so on.

We use these predicates to define the predicate good_time on an entire
Time_sort value

(the_year => 1990,
the,month => 2,

the,day => 29,

the_hour => 12,

the_minute => 34,

the_second => 58,

the_millisecond => 789)

Since there is no February 29, 1990, this formal record value t does not

represent an actual time. Accordingly,

good_time(g) ----false

We can use these predicates to document that a given Ada subprogram
will behave correctly only when its arguments represent possible dates and
timesl
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• Trait time_representation_conversions

This trait encapsulates the theory of converting from one time represen-
tation to another.

4.2.2 Detailed Specifications

Here we present and discuss the Larch/Ada specification of every subprogram

in the package Calendar_Utilities obtained from NASA. The mathematics

used in the specification is found in the traits discussed above in Section 4.2.1.

The disambiguating comments after overloaded function names are the same as
in Section 3.

The style of each specification is much the same as every other. After reading

the first few, as well as the specification of time_of (Time), the reader may wish

to proceed to the general discussion of the specifications in Section 4.3. The

specification of t ime_ot (Time) deserves attention because it is the first in which
the Ada type to Larch sort correspondence is discussed in full depth.

Function is_leap_year

FUNCTION is_leap_year(the_year : IN year) RETURN boolean;

-- l WHERE

--[ IN (good_year(the_year)) ;

-- l RETURN is_leap_year(the_year) ;

--[ END WHERE;

This function calculates whether or not the given year is a leap year. The

IN annotation uses the predicate good_year to restrict the value of the argu-

ment the_year to the acceptable interval [1901,2099]. The RETURN annotation

specifies that the the returned boolean has value true if and only if the_year

is a leap year, using the predicate is_leap_year to do so.

Note from the absence of global annotations that this function must have no

side effects. Similarly, since there are no propagation annotations, this function

must not terminate by propagating an exception.

Function days_in (Year)

FUNCTION days_in(the_year : IN year) RETURN yeax_day;

-- [ WHERE

-- [ IN good_year(the_year) ;

-- [ RETURN days_in_year(the_year) ;

--I END WHERE;

This functioncalculatesthe number of days in a given year. The IN anno-

tationrestrictsthe value of the argument the_year to the acceptableinterval

[1901,2099].The RETURN annotation specifiesthatfunctioncomputes the num-

ber ofdays in the year.There are to be no sideeffectsorpropagated exceptions.
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Function days./n (Month)

FUNCTION days_in(the_month : IN month; ..............

the_year : IN year) RETURN day;

-- J WHERE

-- J IN good_month(the_month) ;

-- J IN good_year(the_year) ;

--I RETURI days_in_month(the_month, the_year) ;
--i EID WHERE;

This function calculatesthe number of days in a given month. The year

must alsobe given because of February and leap years.The firstII condition

constrains the value of the_month to liein the intervM [I,12]. The second

II annotation restrictsthe value of the argument the_year to the acceptable

interval[1901,2099].The RETURN annotation specifiesthat the number of days

in the month isto be computed. There are to be no side effectsor propagated

exceptions.

Function month_of (Month Number)

FUNCTION month_of(the_month : IN month) RETURN month_name;
--J WHERE"

--[ IN good_month(the_month) ;

-- J RETURN month_name_sort_t ic_val ((the_month- I));

--J END WHERE;

This functionconvertsnumericalmonths tothe corresponding months within

the enumeration type (January. February .... , Dece_mbe!)/The IN annota-

tion restricts the numerical month to the interval [1, i2]. TheRETURN annotation
specifies the enumeration value corresponding to the numerical month

The language of this specification requires some explanation. First, the

Larch/Ada function

month_name_sort_t ic_val

represents the values of the Ada attribute function

month_name 'val

The name of the Larch/Ada funct!on is intended to suggest tha t it takes values
in sort month_name_sort on which Ada type month_name is based. The "_tic_"

is used to represent the tic (apostrophe), which is not acceptable as part of

Larch/Ada function names. The definition ofmonth_name_sort_tic_val is given

in trait sort_names, found in Appendix E.

Second, months of the calendar are numbered from 1, while Ada's enumer-

ation types are numbered from 0. In Ada, 'pos(Januaxy) has value 0, not 1.

Subtracting 1 from The_Month is the necessary adjustment.
There are to be no side effects or propagated exceptions.
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Function month_of (Month Name)

FUNCTION month_of(the_month : IN month_name) RETURN month;

--I W.ERE
-- [ RETURN (month_name_sort_t it_poe (the_month) + 1) ;

-- [ END WHERE;

Months in the enumeration type (January, February .... , December) are

converted to the corresponding numerical months. The RETU_ annotation spec-

ifies the enumeration value corresponding to the numerical month.

The language of this specification requires some explanation. The Larch/
Ada function month_name_sort_tic_pos represents the values taken by the Ada

attribute function month_name'pos. Subtracting 1 from The_onth is necessary

to adjust from the 0-based numbering of Ada enumeration types to the ordinary

1-based numbering of months. For more information, please read the exposition

of the preceding Ada function.
There are to be no side effects or propagated exceptions.

Function day_of (Year, Day)

FUNCTION day_of(the_year : IN year;

the_day : IN year_day) RETURN day_name;
-- [NHERE

--[ IN good_year_and_day(the_yeax, the_day);

--[ RETURN day_name_of(the_year, the.day) ;

--1 END WHERE;

This function calculates the day of the week for a given date. The IN an-

notation specifies that the year and day together constitute a valid date. The

RETURN annotation specifies that the proper day of the week is calculated. There

are to be no side effects or propagated exceptions.

Function day_of (Time)

FUNCTION day_of(the_time : IN time) RETURN year_day;

--[ NHERE

--[ IN good_time(the_time);
--[ RETURN day_of_year(the_t_e.the_year,

the_time.the_month, the_time.the_day);
--I END WHERE;

This function differsfrom the previous day_of functiononly in the repre-

sentationof the given date. The IN annotation specifiesthat the_time is a

good representationof a date and time. The RETURN annotation specifiesthat

the proper day of the week iscalculated.There are to be no side effectsor

propagated exceptions.
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Function time_of (Year, Day)

FUNCTION time_of(the_year : IN year;

the_day : IN year_day) RETURN time;

-- J WHERE

--[ IN good_year_and_day(the_year, the_day) ;

--J RETURN t SUCH THAT (

t. the_year=the_year

AND

t. the_month=month_of (the_year, the_day)
AID

t.the_day=day_of_month(the_year, the_day)
AND

t. the_hour=O

AND

t. the_minute=O

AND

t. the_second=O

AND

t. the_millisecond=O) ;

--J END WHERE;

This function converts the date from representation by a Year-Day pair to

time representation. The IN annotation specifiesthat the Year-Day pair must

actually represent a date. The RETURN annotation specifies that the returned

time value will represent the same date, at the instant it begins. There are to

be no side effectsor propagated exceptions.

Function period_of

FuNcTIoN period_of(the_time : IN time) RETURN period;

-- J WHERE

-- J IN good_time(the_time) ;

--J RETURN (IF (the_time.the_hour<12) THEN am ELSE pm);

--] END WHERE;

This function computes whether a given time Of day is before noon or not.

The IN annotation specifies that the_time is a good representation of a date

and time. The RETURN annotat[onspec{fies .........that am is to be returned for times

before noon, and that pm is to be returned for times from noon onward. There

are to be no side effects or propagated exceptions.

Function time_of (Time)

FUNCTION time_of(the_time : IN time) RETURH calendar.time;
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-- I WHERE

-- I IN good_time(the_time) ;

-- I RETURN time_t o_cal _time (the_time );

--t END WHERE;

This function converts time representations to calendar.time representa-
tions of time and date. Before we discuss its annotations, recall that the value

of the Ada variable the_time is in Larch sort time_sort since that is the sort

on which the Ada type time is based.
The IN annotation specifies that the_time is a good representation of a date

and time. The value of the_time belongs to Larch sort time_sort. Applying the
mathematical function time_to_cal_time to this value yields the correspond-

ing equivalent value in the sort calendar_time_sort. The RETURN annotation

specifies that this equivalent value is the value returned by the Ada function.
There are to be no side effects or propagated exceptions.

Function time_of (Calendar.Thne)

FUNCTION time_of(the_time : IN calendar.time) RETURN time;

-- I WHERE

--I RETURN cal_time_to_time(the_time) ;

--l END WHERE;

This function differs from the previous time_of function basically in that

the representations of time are reversed: the conversion proceeds in the opposite
direction. The IN annotation is implicitly TRUE: all calendar, time values are

valid. The RETURN annotation specifies that value returned is the equivalent, in

the time representation, of the original value, which is in the calendar.time

representation. There are to be no side effects or propagated exceptions.

Function t ime_/mage_of

function time_image_of (the_time : in time;

time_form : in time_format)

retuxn string ;
-- I WHERE

-- I IN good_time(the_time) ;

-- I RETURN time_to_time_string(the_time, time_form) ;

--J END WHERE;

This function extracts the time of day from the given time representation

and converts it to a string representation in the given format. The IN anno-

tation specifies that the_time is a good representation of a date and time. The

RETUR]{ annotation specifies that the returned string represents the input time
in the chosen time string format. There are to be no side effects or propagated

exceptions.
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Function date_image_of

function date_image_of (the_time : in time;

date_foru : in date_format)

return string;
--I WHERE

--[ IN good_time(the_time) ;

--[ RETURN t_e_to_date_etring(the_t_e, date_form);
-- [ END WHERE;

This function differs from the above in that it converts the extracted date,

not time, to the chosen string representation. The I! annotation specifies that
the_time is a good representation of a date and time. The RE22/RlI annotation

specifies that the returned string represents the input date in the chosen date

string format. There are to be no side effects or propagated exceptions.

Function value_of (Date/Time Strings)

function value_of (the_date : in string;

the_time : in string;
date_form : in date_format; -
time_form : in time_format)

return time; ........... :...... _ =
NHERE

RETURN strings_to_time( the_date,
theLtime,

date_form,

time_fo_,
twentieth

);

RAISE lexical_error <=_

(NOT we11_formed_date_string(the_date, date_form))
OR ::

(NOT well_formed_time_string(the_time, time_form));
END WHERE;

This functionconverts date and time from string representationto time

representation.The absence of an IN annotation indicatesthat any input is

acceptable.The RE_I_o[atlon speclf[esthat the returned time val-ue_sto

be equivalentto the representationof time and date in the given inPut formats.

Notice that we have expi[ci[|ydocumented that the code treatsevery two-digit

year asbelonging tothe twen[iethCentury.The RAISE annotati0n specifiesthat

the functionwillraiselexical_error ifand only ifthe stringinput isinvalid.
There arc to be no sideeffects.

[

|

?
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Function durat ioLof

FUNCTION duration_of(the_interval : IN interval)

RETURN builtin, duration;

-- l WHERE

--I RETURN interval_to_duration(the_interval) ;

--I RETURN result SUCH THAT good_duration(result);

-- [ END WHERE;

This function converts time in interval representation to time in duration

representation. The absence of an IN annotation indicates that any input is

acceptable. The first RETURN annotation specifies that the returned duration

value is to be equivalent to the given interval value. The second RETURN anno-

tation is a convenience for verification. Without it, every time that duration_of

is invoked, the user is likely to have to prove the predicate good_duration of

the returned value. With it, the user need only prove the predicate once, within

the verification of duration_of itself. Therever after, the predicate will auto-

matically apply to the returned result, and need not be reproved. There are to

be no side effects or propagated exceptions.

Function interval_of

FUNCTION interval_of(the_duration : IN builtin.duration) RETURN

interval ;

-- l WHERE

-- I RETURN duration_to_interval(the_duration) ;

--I END WHERE;

This function is the inverse of the preceding function. No IN conditions need

to be placed on the_duration, since all duration values are valid. The RETURN

annotation specifies that the returned value is the interval equivalent of the

input value. There are to be no side effects or propagated exceptions.

function image_of (the_interval : in interval) return string;

--{ WHERE

--I RETURN interval_to_string(the_interval);

--[ END WHERE;

This function returns the: string representation of the time in interval

form. There is no IN annotation because all interval values are valid. The

RETURN annotation specifies that the returned value is the string equivalent of

the interval input. There are to be no side effects or propagated exceptions.

Function value_of (Interval String)
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function value_of (the_interval : in string) re_urn interval;
-- J WHERE

--] RETURN, string_to_int erval (Zhe_interval) ;
--[ RAISE lexical_error <=>

-- J WOT well_formed_interval_string(the_interval) ;

--J END WHERE;

This functionconvertstime intervalsin string representationto time inter-

valsin interval representation.All inputs are acceptable:there isno explicit

IM annotation. The RETURI annotation specifiesthat the returned interval

value isto be the equivalentof the input string intervalvalue. There are to

be no sideeffectsor propagated exceptions.
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4.3 Discussion of the Specification

In this section, we first explain our approach for formally specifying existing

software. We then describe the problems with the Calendax_Utilities package

that were revealed when we specified the package.

4.3.1 Formally Specifying and Verifying Existing Software

Ideally, we formally specify software before it is written, and write the software

in tandem with verifying it. Formal methods are best applied to a program

when it is under development. In practice, however, we often specify and ver-

ify existing software, that is, software written previously, independently of us.

Although verifying existing software applies only part of the strength of formal

methods, we still can uncover problems with software.

When verifying existing software without an original specification, we cannot

absolutely know what the software was meant to do. We make assumptions in

writing the specification and we document those assumptions. We then verify

the software with respect to our specifications.
In the case of the Calendar_Utilities package, we used the following ap-

proach to specify the software. First, for reasonable inputs, we specify that the
output be what people would expect. For example, a reasonable input for a

date could be March 2, 1991, and people would expect a conversion of that date

to be 03/02/91 (in terms of the string representation formats in the program).
Second, we specified that the input must be reasonable. The functions we were

given accept unreasonable inputs without complaint. For example, the function

function Time_Of (The_Time : in Time) return Calendar.Time;

as written accepts impossible dates (e.g., March 31) and returns invalid values

for type Calendar. Time without raising an exception. If the invalid values are

then passed as arguments to operations of package Calendar, an exception will

be raised.
We used restrictive Ill annotations to show that the Time_Of can be trusted

only on certain inputs.
We verify the software with respect to our assumptions and specifications.

The demonstrated correctness of a program assures that the program satisfies
our mathematical statement of its behavior; a formally based judgement of

incorrectness assures that the program does not satisfy our description of its
intended behavior.

4.3.2 Discussion of the Software

For most of the Calendar_Utilities subprograms, the Larch/Ada specifica-

tions document the clearly intended design of the software. InformM inspection

assured us that the design was well implemented. However, the entire pack-

age was not problem-free. We found and documented subprograms that do not
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guard against unsafe arguments, that is, arguments that lead to unexpected

results. Of greater concern, we also found dubious features and outright errors
in the software.

Software with No Apparent Problems Functions such as Is2.,eap_Yeaz"

presented no difficulties. The II annotation is practically trivial: the year lies in

the intended range. There are no glISE annotations. We informally determined

that this function will behave as intended for all permissible inputs.

Software with Minor Problems We found that some functions, such as

Day.Dr (Time) and Time_Of, do not guard against unsafe arguments. We there-

fore specify, for example, that the Tins value passed to Day_Of must not rep-
resent such impossible dates as September 31. The Ill annotation defines the

acceptable input values.

Contrast this with function Value_0f (Date/Time Strings), which does guard

against unsafe values by raising exceptions. We document what these unsafe
arguments are with the RAISE annotation. The IN annotation can be the trivial

condition TRUE, because Value_fir can be called with any input.

Problematic Software We begin by describing some shortcomings in the

software that we found in the process of performing the specification. Related
to the above-mentioned numerical representations of impossible dates, there is

unfaithful extraction of information represented in strings.

In the function Valuo_Df (Date/Time Strings), which takes a string and

returns a Time record, the year from "02/27/55" becomes 1955. This assumption

that all two-digit year dates represent years in the twentieth century is dubious,
particularly for software written so near the end of the century. The software

should have a century parameter to allow the user to select the century for the
date. (We have such an argument in our specification function, but its role is

purely documentary, not restrictive. The software, not merely the specification,

needs to take centuries into account.)

We found this dubious feature while attempting to define an inverse to the
original mathematical record-to-string conversion: the inverse did not exist be-

cause century information was being thrown away. We therefore defined the

sort contury to carry the necessary information.

After completing the specification, we systematically compared the software

with the description of what it should do, though this comparison was of course
informal. We marked a number of problems in the software for closer examina-

tion, the most salient three are listed below. We tested these problems before

the verification phase and dei_erminedthat two of the problems were indeed

errors, while the third was a dubious feature of the software.

We had one difficulty with testing that requires explanation. Of the library

units that Calendar_Utilities depends upon, several were available to us only in
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incomplete form and were not compilable. To run our test cases after we identi-

fied potential errors, we removed sections of the software and wrote a handful of

lines so that the necessary units would compile. None of our alterations affected

the software in Calendar_Utilities undergoing formal analysis.

First Problem In the body of Calendar_Utilities, Value_Of (Date/Time

Strings) contains the following lines of software (some of the initial lines are

omitted).

function Value_Of (The_Date :

The_Time :

Date_Form :

Time_Form :

return Time is

Result : Time;

Left_Index : Positive;

Right_Index : Positive;

begin

in String;

in String;

in Date_Format := Full;

in Time_Format := Full)

case Time_Form is

when Full =>

Right_Index :=

String_Utilities.Location_0f

(The_Character => Blank,

In_The_String =>

The_Time(Left_Index ..The_Time'Last)

);

Result.The_Millisecond :=

Millisecond(Natural_Utilities.Value_0f

(The_Time

(1)***

(Left_Index .. (Right_Index - 1))));

Left_Index := Right_Index + 1;
if Period'Value(The_Time

(Left_Index .. The_Time'Last)) = PM then

if Result.The_Hour /= loon then

Result.The_Hour :=

Result.The_Hour + Noon;

end if;

end if;

when Military =>

Result.The_Millisecond :ffi

Millisecond(_atural_Utilities.Value_Of
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-- (2)***

(The_Time(Left_Index .

end case;

return Result;'

exception

.henConstraint_Error =>

raise Lexica1_Error;

end Value_Of;

The_Time'Last)));

- : -- ;

Value_Of takes two string representations of time (eig.} "FEBRUARY 27,
1955" and "01:21:06:30 PM') and extracts the corresponding numerical com-

ponents to build a record representation. The assignments indicated by (1)

and (2) in the code above take hundredths of a second (the "30" from the sec-

ond string above) and insert the millisecond component into th_ record. There
is no multiplication by I0, so the milliseconds in our example are recorded as

30, instead of 300. Re-c0nversion back to a string, using the correct function

Time_Image_0f (employing the expected division by 10)produces the different
string "01:21i06:03 PM".

Second Problem In the body of package Calendax_Utilities, the function

Duration__0f (which immediately follows Value.El) is as follows.

function Duration_Of (The_Interval : in Interval)

return Duration is

begin -_

return ( Duration(Integer(The_Interval.Elapsed_Vays)
* Seconds_Per_Day) +

Duration(Integer(The_Interval. Elapsed_Hours)
* Seconds_Per_Hour) + ....

Duration_Integer(The_Interval,Elapsed_Minutes)
* Seconds_Per_Minute) +

Duration(The_Interval. Elapsed_Seconds) +

-- (1)***

Duration(The_Interval.Elapsed_Milliseconds / I000));

end Duration_Of;

This function takes a record representation of time and returns a numerical

fixed-point representation. In line (1), an integral number of milliseconds is
intended to be converted into a fractionaI number of seconds. Thus 276 mil-

liseconds should convert to 0.276 seconds. The conversion to fixed-point type

Duration occurs, however, after integer division. Millisecond values are be-

tween 0 and 999 and hence will always produce 0 when divided by 1000. Thus,
Duration_Of wrongly converts any Interval record into a whole number of
seconds.

|
=

=:

E
=

|

-=



4.3 Discussion of the Specification 37

Third Problem Consider again the function Value_0f (Date/Time Strings).

function Value_Of (The_Date : in String;

The_Time : in String;

Date_Form : in Date_Format := Full;

Time_Form : in Time_Format := Full)

return Time is

Result : Time;

Left_Index : Positive;

Right_Index : Positive;

begin

case Date_Form is

when Full =>

when Month_Day_Year =>

-- (1)***

Result.The_Day := Day(Natural_Utilities. Value_Of

(The_Date (Left_Index .. (Right_Index- 1))));

end case;

,.,

end Value_Of ;

In line (1), which occurs in the first case statement of the software, the day

of the month is selected from the date string. Thus if the string is "FEBRUARY

27, 1955", we wish to select the "27" and then convert it to the integer value of

27. An Ada slice is taken, using

(Left_Index .. (Right_Index- I))

In our example, the Ada 'first and 'last values of the slice are l0 and 11,

respectively. This fairly arbitrary slice is then passed to the separate pack-

age Natural_Utilities for conversion to a numerical value. A better approach
might be to "normalize" the slice to one whose range was 1..2, rendering the soft-

ware robust across differing implementations of the I|atural_Otilitie8 pack-

age. In fact, the package l|atural_Utilities that came with the software was

written assuming that strings began at position l, and an exception was raised

when we ran Value_0f on this example.
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4.4 Verification

In Section 2.3, we described formal verification in Penelope in general terms. In

this section, we will describe the verification of ealendar_tltilitie8 in detail.

First, we place qualifications on our results. Second, we comment briefly on

the subprograms that we fully verified. Third, we discuss the errors we detected.

Finally, we summarize the results.

4.4.1 Qualifications of the Results

When we state that software has been verified as correct using Penelope, we

must consider three qualifications. First, we are working within Penelope's

program semantics, which do not model all the possible behaviors of an Ada

program. An Ada program correct in the Penelope semantics may still have
certain unacceptable behaviors. Second, correctness is verified with respect to a

specification that may not exactly reflect the developer's intention. Third, the
correctness is verified for a modified version of the Calendar_Utilities code.

Because Penelope is still being developed, we had to modify the code to be in
the subset of Ada that Penelope currently supports. Some modifications were

major changes to the code, and others were minor changes to accommodate the
limitations of Penelope.

Correctness Within Penelope's Program Semantics Our notion of cor-

rectness is termed parlial correctness. Partial correctness means that a program
is correct if whenever it is started in a state that satisfies all of its initial con-

ditions and the program also halts, it halts in a state tbat satisfies all of its

final conditions. The program may, however, fail to halt. A program that loops

forever will be correct by our semantics.

Fortunately, failure to halt is not a concern in this effort, since the only iter-
ation constructs in the verified code are FOR loops, which have been transformed

into equivalent WItILE loops. The upper bounds have predefined maximum val-

ues. There are no recursively defined routines.

Secondly, our notion of correctness excludes the possibility of numeric over-

flow or storage error. The formal basis of Penelope deliberately omits them.

Penelope verification is predicated upon programs not raising those exceptions.

For a fuller description and discussion of the meaning of a complete Penelope

verification, see Guaspari [9].

Specifications The software is proved to meet specifications that we supplied.

If our specifications are not the proper ones, the verification of the software is

irrelevant. For the verification to be relevant, we must reflect the intent of the

developer.

We must also define the logical theory correctly. If the vocabulary from

the theory does not have its intended meaning, or worse yet, if the theory is
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self-contradictory, the verification is suspect. Furthermore, the asserted lemmas

may not actually follow from the axioms. Currently, the only safeguard against

these defects is the expertise of the verifier. Efforts are underway to provide

automated assistance to users of Penelope in constructing theories.

Major Changes to the Code There are four types representing time in

package Calendar_Utilities. There is the private type Time from the package

Standard. Calendar, the record type Time of the package Calendar_Utilities,

the record type Interval of the package Calendar_Utilities, and the built-in
fixed-point type Duration. The first three types presented no problems, but we

had to make major changes to the code to treat the last type.

The Ada Reference Manual does not specify a concrete implementation for

the private type Time, nor does the concrete type matter so long as we are

able to represent values of types year_number, month_number, day_number and

day_duration as objects of type time in a manner that respects the operations.

We must be able to convert to type time, add, subtract, compare and sub-

sequently convert back to the correct values by means of the functions in the

package. Beyond this, the particulars of type time are irrelevant.

We used integer as the concrete type for Time: it satisfies all the necessary

conditions. We conceive of time as integer multiples of a fundamental unit, the

catu (calendar atomic time unit), of which all of our other time units are integer

multiples. The traitsdescribe the theory for converting between all our discrete
representations of time, all based on the catu.

Everything would be completely straightforward if it were not for the fixed-

point type durat ion. eRA has addressed the theory of real number types [11],

and real number verification will be melded with Penelope in Penelope/Ariel,

schedule for release in 1992. In the meantime, we must give some treatment of

the fixed-point type Duration.

We changed the Ada declaration of Duration to be a record type pairing
numerator and denominator; we based all fixed-point numbers and operations

on the rational numbers under addition and multiplication. In doing so, we

assumed that the error inherent in rounding, addition, assignment, and so on is
too small to affect the basic correctness of our results.

Because fixed point operations in Ada are not exact, while our rational

operators are, a critic could reasonably argue that our verification should be

performed again in Penelope/Ariel, which supports real number types. We feel,
however, that our treatment of fixed-point types was sufficient for us to certify

the correctness of some subprograms and to detect the incorrectness of others.

The differences between rational and fixed-point operations should be negligible.

We would expect no surprises under subsequent re-verification.

Accommodating Limitations of Penelope To accommodate the limita-

tions of our current editor, we made minor changes to the code and performed
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some tasks manually. The changes we made to the code were innocuous. These

changes included translating the Ada text to lower case, using the fully quali-
fied forms of several names, converting from one type to another with function
calls instead of with explicit type conversions, translating FOR loops to equiva-
lent WHILEloops. In addition, we altered the form of certain procedure calls in
order to satisfy Penelope's conservative restrictions against potential aliasing.
We removed the declarations of exceptions because Penelope does not yet sup-
port their Ada declarations; they are, however, implicitly declared by mention
in Larch/Ada. Finally, we changed named parameter associations to positional
parameter associations. None of these changes affected the Ada semantics.

We overcame other limitations by doing manually what Penelope does not
yet do automatically. We explicitly coded range constraint checks. We type-
checked Ada expressions by hand. We simulated Larch/Ada attribute functions

by functions we defined ourselves. We simulated Larch/Ada aggregates sim-
ilarly. All of this work was performed in accordance with our mathematical
theory of verification.

The details of these changes and manual tasks are described below.

• Restriction to lower case

Ada identifiers and reserved words are case-independent (RM 2.3[3], RM

2.9[4]). The Ada object obj may be denoted by "OBJ', "Obj", "obj",
etc. The Ada programmer is free to use any mixture of case desired for
object identifiers.

Larch, however, is case sensitive [10]. The Larch/Ada terms "OBJ',
"Obj", and "obj" are, thus, all distinct linguistic entities--only one of
these terms can canonically represent the value of the Ada object. Early
in the development of Penelope, we made the all-lower-case form canoni-
cal.

So as to maintain a clear relationship between Ada objects and the Larch
terms that represen t their values, we conyerted all the identifiers appearing
in Calendar_Utilitio8 to lower case. This change did not affect the Ada
semantics.

• Fully expanded expressions

Penelope does not yet support the ttSi_ context clause. When referring
to types and objects of WlTlted packages, it was necessary to write their
fully expanded names. -Thus, we needed to change the references to type
yea.r_number of package calendar to read "calendar.. year_number". In
the same vein, we declared and WITlted a package builtin so that we

could refer to the built-in type duration.

• Constraints and ranges

Penelope does not yet support range constraints. The integer type defini-

tions in the original code have therefore been transformed to declarations
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of unconstrained new integer types. Larch/Ada predicates for the sorts

corresponding to these types have been defined so that we can code range

checking explicitly.

The names of these functions are the names of the corresponding types

prefixed with "good_". Their definitions are taken from the bounds of

the range in the original Ads text of Cal,ndax_Utilities. We used

them systematically in the specifications of programs that have formal

parameters of the original range type, and as conditions on axioms and

lemmas that have variables of the corresponding sort. Doing so ensured

that range checking is always part of the correctness condition of the
verified software.

For instance, the explicit Larch/Ads IN annotation

IN good_month(the_month);

takes the place of the implicit constraint check

1 < the_onth < 12

for the Ads type Month.

* Derived types

Penelope does not yet fully support derived types in Ads. The type mark 11

of a derived type is today treated as an alias for the parent type instead of

as an isomorphic copy. This means that Penelope's typechecking of Ads

is somewhat too lenient, as it does not guard against improperly mixing
parent and derived types in an Ads expression. It was part of our task as

verifiers to take such precautions manually.

e Type conversion

Type conversions are not yet supported by Penelope. Its typechecker does,

however, support the restriction against using names of types as function

names. Where explicit type conversions appear in the original Ads code,
therefore, they are rejected by Penelope as illegal function calls. To over-

come these limitations, we have replaced all explicit type conversions with

calls to actual functions whose specified effect is to perform the desired

type coercions.

The name of a coercion function follows this convention: the name of

the target type has the suffix "_ize'. Thus a function that coerces to

type integer is named "integer_ize "12. Since the coercion functions

llSee the Ads RM 3.3.2:2-3, 3.4
12Ads overloading permits as many identically-named functions as required, one for each

type to be coerced. The typechecker determines which function is intended from the type of
the argument.
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are purely auxiliary, no bodies for them are given, only Ada specifications.

Their Larch/Ada specifications provide the predicate transformers with all
of the information that is required to perform the necessary type coercions.

That constrained types and ranges are not yet supported introduces fur-

ther complications. There is currently no distinction in Penelope between

the types integer, natural and posi¢ive; consequently, are all the same

type: the c0nversion between them is apparent, not real. The "_ize"
functions for the numeric types thus actually all take integer arguments

and return integer results under another name.

We have these pseudo-conversions in the code for two reasons. First,

we wish to change the text as little as possible. The change in going

from natural(obj) to natural_ize(obj) is smaller than in going from

natural(obj) to obj. Second, we express the constraints that must
hold for the object as Larch/Ada Ill specifications on the "_.ize" func-

tions. Thus, we specify that the input value to natural.Xze must be

non-negative. In fact, we explicitly state all of the constraints on objects

that Penelope will later infer from their types.

Attribute functions

Penelope does not yet support the automatic generation of attribute func-

tions, nor is the "tic" (i.e., the character "'') notation for them acceptable

syntax. We replaced each function of the form <type_mark> ' <attribute>

in the original code by a function named <type_mark>_tie_<attribute>.
We have added Ada specifications for these functions; the new Ada spec-

ifications are identical to those defined for the corresponding attribute

functions. These pseudo-attribute functions have been annotated with

Larch/Ada specifications that correctly describe the semantics of the at-

tribute function by means of axioms that have been entered manually into

the traits. The entire process is well defined and capable of automation.

Aggregates

Penelope does not yet support aggregate expressions. We circumvented
this limitation in each case by declaring a temporary object of the result

type, assigning the appropriate values to its fields, and returning the object
thus constructed.

Penelope will someday have aggregate-like constructs in Larch/Ada. Even
without them, however, we have full expressiveness in Larch/Ada to name

any (finite) array value. The array-update notation

Array[index => value]

denotes the array having value value at index index and agreeing with

Array at every other index. Repeated application of the array-update
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notation can be used to denote an array having a chosen value at each

index.

To suggest the aggregate-likenotation that we willsomeday implement,

we declaredconstant functionson arraysortsand updated allofthe com-

ponents of theseundetermined constantswhenever we wished to name a

particulararray value. One example isthe term denoting the array of

days of the months in an ordinary year:

month_days_tic [1=>31] [ 2=>28] [ 3=>31] [ 4=>30]

[5=>31] [ 6=>30] [ 7=>31] [ 8=>31]

[9=>30] [10=>31] [11=>30] [12=>31]

FOR loops

FOR loopsare not yet included inthe subsetof Ada forwhich Penelope has

verificationrules.FOR loopsinthe code have been replacedby WHILE loops

whose testisthat the index variablehas reached the upper bound. The

index variableisinitializedto the lower bound by a preceding assignment

statement and isincremented by an assignment statement at the end of

the loop body.

Aliasing

Penelope has very conservativechecks againstimproper aliasing;these

checks rejectsubprogram callswhich would resultin certainkinds of pro-

gram errors13,but may alsorejectsubprogram callsthat areerror-free.In

particular,Penelope does not allowtwo components from the same record

object to appear as actualsfor out or in out formal parameters--for

example, the call

calendar.spliS(result.the_year,

result.the_month,

result.the_day)

To accommodate the checks, we rewrote the call slightly. The modified

code calls calendar, split with temporaries in place of the record compo-

nents and assigns each of the temporaries to the corresponding component

after the procedure call.

• Exceptions

The circumstances under which Constraint.Y.,rrorwould be raisedby the

applicationof day_name_tic_val are specifiedin the Larch/Ada annota-

tion of that function.

ZaTechnically, certain kinds of erroneous executions and incorrect order dependences.
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Penelope does not yet support Ada restrictions on declaration of excep-
tions. Instead, Penelope considers an exception to be implicitly introduced

at its first occurrence in propagation annotations. We removed exception

declarations to perform this verification. After this change, Penelope is,

in effect, more lenient than Ada in thedecIaration of exceptions. We

__/herefo)_e ensured thai we did not introduce new exceptiohs.

• Actual Parameter lists

Penelope does not yet support named parameter association. We changed
occurrences in the original code to positional parameter association. This

change affects only the convenience of the caller, not the correctness of

the subprogram.

4.4.2 l_sults

Ver_t_ed Functlons We fully verified the functions _s_Lsap_Yeax,: Days_In

(both Month and Year vers|ons), Month_Of (both Number and Name versions),

Day_Dr (T_e version), Time/f (Year, Day version) and Period.fir.

Detected Errors The function Duration_El contains a programming error

that was detected first in the specification phase and is discussed in Section 4.3.
In this verification phase, the error was highlighted by completing the proofs

for all of the VCs of the program except for one, which can be seen to closely

correspond to the incorrect express_oa.

The goal of the VC, paraphrased, says that the value held by an integer

variable (The_Interval. Elapsed_Milliseconds)is unchanged when it is suc-
cessively divided, then multiplied by 1000 (using integer arithmetic):

(the_int erval, elapsed_milliseconds/I000) *1000

the_interval, elapsed_milliseconds

A well-trained verifier may respond to this clearly unprovable goal by recognizing

its relation to the R_.TURI condition of the specification and pinpointing the line

of code with the offending expression.

Two further errors were actually discovered during the verification process.

Both errors occur in the function Day_Dr (Year, Day). We detected them by

realizing that we could not prove the VC generated for the loop invariant. The

two remaining incomplete subproofs correspond to the two errors.
The function

Day_of(the_year: year; the_day: year_day) return day_name;

returns the name day of the week on which day number the..day falls in the
year the_year. It proceeds by first executing a loop to determine the day of

z

t

i
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the week on which the_year begins, and then shifting that day of the week by

the_day (modulo 7). Each step contains an error.

The loop counter Index runs from year'first÷l to the_year, and each

iteration of the loop should advance the day_name stored in result by either
one day (if Index is not a leap year) or two days (if it is)i The VC for the loop,

however, is this:

(IF is_leap_year(the_year)

THEI (good_day_name(day_name_sort_increment (result, 2))
->

(day_name_sort_increment (result. 2)

day_name_of (index, I)))

ELSE (good_day_name (day_name_sort_increment (result, I))

->

(day_name_sort_increment (result, I)

day_name_of (index, 1) ) ) )

This is unprovable, because the IF assertion is branching, not on the value of

index, but on the value of the_year. On checking the IF statement in the body

of the loop, we find that it incorrectly tests the loop bound instead of the loop

index; that is, Is_Leap_Year(The_Year), instead of Is_Leap_Year(Iudex).

The problem with the second step is that it attempts to calculate the shift
as follows:

Natural((the_day rood 7) - I)

If the value of the_day rood 7 is zero, the type conversion to IIaturalwill raise

an exception. The shift should instead be calculated by

Natural((the_day - I) mod 7)

This error was discovered by considering the VC

0 < (the_day HOD 7)

AND

( good_day_name(

day_name_sort_increment(result, (the_day MOD 7) - I)

)
->

( day_name_sort_increment(result, (the_day MOD 7) - I)

day_name_of (the_year, the_day)
)

)
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The assertion 0 < (the..day NOD 7) is simply not true, and this directed us

immediately to the mistaken calculation of the shift. (Note the origin of 0 <

(the_day NOD 7): it is precisely what must hold in order to guarantee that the

unwanted constraint error is not raised.)
The most intriguing thing about these last two errors is that they will not

invariably lead to incorrect output from the function. Though we will not prove

it here, the function will in fact return the correct value for the years 1984-

87, as long as the value of the input parameter The_Day is not congruent to 0

rood 7. There is at least the p_qlitythat the existence of a problem could go

undetected through some moderately extensive, but unfortunately chosen, test
cases.

Each of the errors described in this section is a local mistake and can be fixed

with a small change to the program. The near-completeness of the corresponding
VCs clearly shows that the resulting programs could then be fully verified.
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4.4.3 Summary of Results

We specified all eighteen functions of the package Calendar_Utilities using

Larch/Ada. Of these, we selected thirteen for formal verification. We treated

eleven of the thirteen completely.

Of the eleven we treated formally, we verified eight and detected errors in

three others. Seven functions were not treated formally.

Our results are in the table below. When two functions share a common

name, we comment on their arguments enough to distinguish them.

Function Comments Verified Incorrect Not Treated

Is_Leap_Year

Days_In

Days_In

Month_3f

Month_Of

Day_3f

Day_Of

Time_Of

Period_El

Time_Of

Time_0f

Time_Image_Of

Dat e_Image_Of

Value_Of

Durat ion_3f

Int erval_Of

Image_Of

Value_Of

(Year)

(Month)

(Month Number)

(Month Name)

(Year, Day)

(Time)

(Year, Day)

(Time)

(Calendar.Time)

(Date/Time Strings)

(Interval String)
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5 Conclusions

This demonstration of the power and practicability of formal methods in Pene-

lope was a success. Formal specification in Penelope was useful for analyzing
the software, both informally and formally. Formal verification gave greater

confidence in the correctness of most of the package. Where the software was

incorrect, the errors detected by Penelope could have gone unnoticed in testing.

This verification effort was the first to use a non-built-in data type exten-

sively in Penelope. Without the automatic simplification that is provided for

the built-ln types, we found ourselves spending far too much of our time man-

ually applying simplification directives. Future directions for Penelope should
include consideration of automatic simplification within user-supplied theories.

Library-based verification would have been greatly advantageous. Because of

the sheer bulk of the Ada code within a single buffer, Penelope ran very slowly.

This problem lends support to our conclusions, drawn before this demonstration,

that library-based verification is a necessity and validates our efforts in that
direction.

Penelope is a useful prototype today for developing correct software. As

ORA continues to enhance Penelope, it will become a generally useful tool.
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Appendix A: Related Work

The field of formal verification began with the work of Hoare [12, 13]. Dijkstra
and Gries went on to develop and advocate a distinctive style of verification

based on Hoare's ideas. A thorough basic introduction to Dijkstra-Gries style

verification can be found in Gries [6]. The same material is covered more fully
in Dijkstra [3].

A serious obstacle to performing Dijkstra-Gries style verification by hand

is the crushing work of bookkeeping in verifying actual programs (as opposed

to textbook exercises). Penelope [8] is an automated assistant that manages

the details of predicate transformation and proof checking, freeing the user to
perform the conceptual work of verification.

Other computerized verification systems include EItDM [2], Gypsy [5], ORA
Ottawa's m-EVES [1], and SDVS [15].

The Larch [10] system of mathematical specification separates mathematical

concerns from programming concerns. Significant research has investigated how

best to specify programs in the Larch system [17].
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Appendix B: Glossary

Assertion

Floyd-Hoare Triple

Precondition

Predicate

Program Semantics

Sort

Specification

A mathematical statement about a program state.
To make an assertion is to claim that a certain

predicate is true.

The triple {initial} S {final} symbolizes that soft-
ware S transforms state initial into state final.

The Floyd-Hoare triple is basic to the mathemat-

ics of program semantics.

A predicate that must hold on the program state
before a statement executes if the statement is to

bring about its intended effect.

A logical formula such as z > 17; a mathemati-
cal expression that is either true or false when its

variables are assigned values.

Loosely speaking, the behavior of software. Pro-

gram semantics treats the behavior of a program

as its meaning.

The logical category of a mathematical object,

analogous to a data type. The sort of the mathe-

matical integers is Int.

A user-supplied predicate describing the condi-
tions that are to hold at various points in the ex-

ecution of a program.

• Input specifications describe the initial state

of the program; that is, what must be true
before the program executes.

• Output specifications describe the final state

of the program. The circumstances of both

normal and exceptional termination can be

specified.

• In addition, there are specifications available

to describe conditions at user-chosen points

within the program body.
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Tier

Trait

Predicate Transformation

VC

Verification Condition

One of the two levels of Larch/Ada specification.

The interface tier is used to specify program be-

havior mathematically. The mathematical ma-

chinery for the specification is modularized into
traits in the mathematical tier.

A Larch theory module. Traits encapsulate all

of the apparatus of a logical theory: the sorts,

function declarations, axiom, lemmas, and so on.

An example is the trait for the theory of integer

arithmetic given on p. 83 of Larch in Five Easy

Pieces [10]: the sort introduced is Int, a familiar

axiom is z < (z + 1).

Note that traits can be built up from other traits,

just as program modules can call other program
modules.

A process akin to symbolic execution of a program

during which the precondition of each statement

in a program is calculated.

See Verification Condition.

A formula that must be proved true for a program

to be proved correct. Loosely speaking, the Verifi-
cation conditions of a program collectively assert

that the statements of the program act together to

transform the specified initial program state into

one of the specified acceptable final states.

Verification conditions are calculated from speci-

fications and preconditions.
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Appendix C: Package Calendar_Utilities

This appendix shows the full Ada=text of the Ada specification and the body of

the package Calendar_Utilities. It differs only by reformatting from the text

that NASA sent ORA.

Copyright Grady Booch, part of the Ada Booch components 1984-1992.

C.1 Package Specification of Calendar_Utilities

with Calendar;

package Calendar_Utilities is

type Year is new Calendar.Year_Number;

type Month is range 1 .. 12;

type Day is range 1 .. 31;

type Hour Is range 0 .. 23;

type Minute IS range 0 .. 59;

type Second is range 0 .. 59;

type Millisecond is range 0 .. 999;

type Time is
record

The_Year : Year;

The_Month : Month;

The_Day : Day;

The_Hour : Hour;

The_Minute : Minute;

The_Second : Second;

The_Millisecond : Millisecond;

end record;

type Interval is

record

Elapsed_Days : Natural;

Elapsed_Hours : Hour;

Elapsed_Minutes : Minute;

Elapsed_Seconds : Second;

Elapsed_Milliseconds : Millisecond;

end record;

type Year_Day is range 1 .. $66;

type Month_Name is (January, February, March,

April, May, June,
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type Day_ia_e

July, August, September,

October, November, December);

is (Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday);

type Period is (AM, PM);

type Time_Format is (Full, -- 01:21:06:30 PM

Military); -- 13:21:06:30

type Date_Format is (Full, -- FEBRUARY 27, 1965

Month_Day_Year); -- 02/27/55

func¢ion Is_Leap_Year

return Boolean;

function Days_In

return Year_Day;

function Days_In

return Day;

function Month_Of

return Month_Name;

function Month_Of

return Month;

function Day_Of (The_Year

The_Day

return Day_Name;

function Day_Of (The_Time

return Year_Day;

function Time_Of (The_Year

The_Day

return Time;

function Period_Of (The_Time

return Period;

function Time_Of (The_Time

return Calendar.Time;

function Time_Of (The_Time

return Time;

(The_Yeur : in Year)

(The_Year : in Year)

(The_Month : in Month;

The_Year : in Year)

(The_Month : in Month)

(The_Month : in Month_Name)

: in Year;

: in Year_Day)

: in Time)

: in Year;

: in Year_Day)

: in Time)

: in Time)

: in Calendar.Time)

function Time_Image_Of (The_Time : in Time;

Time_Form : in Time_Format := Full)

return String;

function Date_Image_Of (The_Time : in Time;

Date_Form : in Date_Format := Full)

return String;

function Value_Of (The_Date : in String;
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The_Time : in String;

Date_Form : in Date_Format := Full;

Ti=e_Form : in Time_Format := Fu11)

return Time;

function Duratlon_Of (The_Interval : in Interval)

return Duration;

function Interval_Of (The_Duration : in Duration)

return Interval;

function Image_0f (The_Interval : in Interval)

return String;

function Value_0f (The_Interval : in String)

return Interval;

Lexical_Error : exception;

end Calendar_Utilities;

C.2 Package Body of Calendar_Utilities

with Integer_Utilities,

Fixed_Point_Utilities,

String_Utilities;

package body Calendar_Utilities is

type Month_Day is array(Month) of Day;

Century_Offset

Days_Per_Year

Days_Per_Month

First_Day

Seconds_Per_Minute

Seconds_Per_Hour

: constant := 1900;

: constant := 368;

: constant Month_Day := (1 => 31

2 => 28

3 => 31

4 => 30

5 => 31

6 => 30

7 => 31

8 => 31,

9 => 30,

10 => 31,

11 => 30,

12 => 31);

:= Tuesday;

:= 60;

:=

: constant Day_Name
: constant

: constant
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60 * Seconds_Per_Minute;

Seconds_Per_Day : constant :=

24 * Seconds_Per_Hour;

Milliseconds_Per_Second : constant := 1000;

Noon

Time_Separator

Date_Separator

Blank

Comma

Zero

: constant Hour := 12;

: constant Character := ''';

: constant Character := '/';

: constant Character := ' ';

: constant Character := ',';

: constant Character := '0';

package latural_Utilities is new Integer_Utilities

(lumber => Natural);

package Duration_Utilities is new Fixed_Point_Utilities

(lumber => Duration);

function Image_Of (The_Number : in _atural) return String is

begin

if The_Number < 10 then

return String_Utilities.Replaced

(The_Character => Blank,

With_The_Character => Zero,

In_The_String =>

Natural_Utilities.Image_Of(The_lumber));

else

return String_Utilities.Stripped_Leading

(The_Character => Blank,

From_The_String =>

Natural_Utilities. Image_Of(The_Number));

end if;

end Image_Of;

function Is_Leap_Year (The_Year : in Year) return Boolean is

begin

if The_Year mod 100 = 0 then

return (The_Year mod 400 = 0);

else

return (The_Year mod 4 = 0);

end if;

end Is_Leap_Year;

function Days_In (The_Year : in Year) return Year_Day is

begin
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if Is_Leap_Year(The_Year) then

return (Days_Per_Year + I);

else

return Days_Per_Year;

end if;

end Days_In;

function Days_In (The_Month : in Month;

The_Year : in Year) return Day is

begin

if (The_Month = Month_Name'Poe(February) + I) and then

Is_Leap_Year(The_Year) then

return (Daye_Per_Month(Month_Name'Pos(February) + 1)

+ 1);

else

return Days_Per_Month(The_Month);

end if;

end Days_In;

function Month_Of (The_Month : in Month) return Month_Name is

begin

return Month_Name'Val(The_Month - I);

end Month_Of;

function Month_Of (The_Month : in Month_Name) return Month is

begin

return (Month_lame'Poe(The_Month) + I);

end Month_Of;

function Day_Of (The_Yea/ : in Year;

The_Day : in Year_Day) return Day_Name is

Result : Day_Name := First_Day;

procedure Increment(The_Day : in out Day_|ame;

Offset : in Natural := I) is

--This moves you through day names by offset places.

--Instead of using MOD, it uses exception .hen you pass

--Sunday

begin

The_Day := Day_Name'Val(Day_Name'Pos(The_Day)

+ Offset);

exception

when Constraint_Error =>

The_Day := Day_lame'Val(Day_Name'Pos(The_Day)

+ Offset - 7);
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end Increment;

begin

for Index in (Year'First + I) .. The_Year loop

if Is_Leap_Year(The_Year) then

Increment(Result, Offset => 2);

else

Increment(Result);

end if;

end loop;

--this uses 366/366 REM 7 and goes throush the years,

--then does days

Increment(Result,

Offset => Natural(((The_Day mod 7) - I)));

return Result;

end Day_Of;

function Day_Of (The_Time : in Time) return Year_Day is

Result : Natural := O;

begin

for Index in Month'First .. (The_Time.The_Month - I) loop

Result := Result +

Natural(Days_In(Index, The_Time.The_Year));

end loop;

return Year_Day(Result + Natural(The_Time.The_Day));

end Day_Of;

function Time_Of (The_Year : in Year;

The_Day : in Year_Day) return Time is

Result : Year_Day := The_Day;

begin

for Index in Month'First .. Month'Last loop

if Result <= Year_Day(Days_In(Index, The_Year)) then

return Time'(

The_Year

The_Month

The_Day

The_Hour

The_Minute

The_Second

=> The_Year,

=> Index,

=> Day(Result),

=> Hour'First,

=> Minute'First,

=> Second'First,

The_Millisecond => Millisecond'First);

else

Result :=

Result - Year_Day(Days_In(Index, The_Year));

end if;
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end loop ;

raise Lexical_Error;

end Time_Of ;

function Period_Of (The_Time : in Time) return Period is

begin

if The_Time,The_Hour >= loon then

return PM;

else

return AM;

end if ;

end Period_Of ;

function Time_Of (The_Time : in Time) return Calendar.Time is

begin
return Calendar. Time_Of

(Year =>

Calendar. Year_Number(The_Time. The_Year),

Month =>

Cal endar. Month_lumber (The_Time. The_Month),

Day =>

Calendar. Day_lumber(The_Time. The_Day),

Seconds =>

Calends/. Day_Durst ion

(Inteser (The_Time. The_Hour) *

Seconds_Per_Hour) +

Calendar. Day_Durat ion

(Integer (The_Time. The_Minute) *

Seconds_Per_Minute) +

Calendar. Day_Durat ion (

The_Time. The_Second) +

Calendar. Day_Durat ion

(The_Time. The_Millisecond /

Milliseconds_Per_Second) ) ;

end Time_Of ;

function Time_Ol (The_Time : in Calendar.Time) return Time is

Result : Time;

Total_Duration : C_endar.Day_Duration;

Seconds : latural ;

begin

Calendar. Split (The_Time,

Year =>

Calendar. year_lumber(Result. The_Year),
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Month =>

Calendar.Month_Number(Result.The_Month),

Day =>

Calendar.Day_Number(Result.The_Day),

Seconds =>

Total_Duration);

Seconds := Duration_Utilities.Floor(Total_Duration);

Result.The_Hour := Hour(Seconds / Seconds_Per_Hour);

Seconds := Seconds mod Seconds_Per_Hour;

Result.The_Minute :=

Minute(Seconds / Seconds_Per_Minute);

Result.The_Second :=

Second(Seconds mod Seconds_Per_Minute);

Result.The_Millisecond :=

Millisecond

(Duration_Utilities.Real_Part

(Total_Duration) * Milliseconds_Per_Second);

return Result;

end Time_Of;

function Time_Image_Of (The_Time : in Time;

Time_Form : in Time_Format := Full)

return String is

begin

case Time_Form is

when Full =>

if The_Time.The_Hour> Noon then

return (

Image_Of(Natural(

The_Time.The_Hour- 12))

Time_Separator

Image_Of (Natural (The_Time. The_Minut e) )

Time_Separator

Image_Of (Natural (The_Time. The_Second) )

Time_Separator

Image_Of(Natural(

The_Time.The_Millisecond) / I0)

" PM',);
else

return (

Image_Of(Natural(The_Time.The_Hour)) k

Time_Separator

Image_Of(Natural(The_Time.The_Minute))

Time_Separator
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Image_Of (Natural (The_Time. The_Second) ) •

Time_Separator •

Image_Of (Natural (

The_Time.The_Hi111second) / I0) •

" AM") ;

end if ;

when Military =>

return (Image_Of (Natural(The_Time. The_Hour)) •

Time_Separator

Image_Of (Natural (The_Time. The_Minut e) ) •

Time_Separator k

Image_Of (Natural (The_Time. The_Second) ) •

Time_Separator k

Image_0f (Natural (

The_Time.The_Millisecond) / 10)) ;

end case;

end Time_Image_Of;

function Date_Image_Of (The_Time : in Time;

Date_Form : in Date_Format := Full)

return String is

begin

case Date_Form is

when Full =>

return (Month_Name'Image(Month_Name_Val(

The_Time.The_Month - 1)) •

Natural_Utilities. Image_Of(

Natural(The_Time.The_Day)) •

Comma •

Natural_Utilities.Image_Of

(Natural(The_Time,The_Year)));

when Month_Day_Year =>

return (Image_0f(Integer(The_Time.The_Month)) •

Date_Sepa/_ator •

Image_Of_Integer(The_Time.The_Day))

Date_Separator •

Image_Of(Integer(The_Time.The_Year))

(4 .. s));
end case;

end Date_Image_Of;

function Value_Of (The_Date : in String;

The_Time : in String;

Date_Form : in Date_Format := Full;
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Time_Form : in Time_Format := Fail)

return Time is

Result : Time ;

Left_Index : Positive;

Right_Index : Positive;

begin

case Date_Form is

when Full =>

Right_Index := String_Utilities.Location_0f

(The_Character => Blank,

In_The_String => The_Date) ;

Result. The_Month := Month(Month_|ame 'Poe

(Month_|ame ' Value

(The_Dat • (

The_Date'First ..

(Right_Index - I))))

+ 1);

Left_Index := Right_Index + 1;

Right_Index := String_Utilities.Location_Of

(The_Character => Comma,

In_The_String =>

The_Dat e (

Left_Index.. The_Date 'Last) ) ;

Result.The_Day := Day(Natural_Utilities.Value_Of

(The_Date

(Left_Index ..

(Right_Index - 1)))) ;

Left_Index := Right_Index + 1;

Result.The_Year := Year(Natural_Utilities.Value_Of

(The_Date

(Left_Index ..

The_Date 'Last) ) ) ;

when Month_Day_Year =>

Right_Index := String_Utilities.Location_Of

(The_Character => Date_Separator,

In_The_String => The_Date);

Result.The_Month :=

Month (Natural_Ut il it ies. Value_Of

(The_Date

(The_Dare'First .. (Right_Index - i)))) ;

Left_Index := Right_Index + I;

Right_Index := String_Utilities.Location_Of

(The_Character => Date_Separator,

In_The_String =>
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The_Date(Left_Index ..

The_Date ' Last) ) ;

Result.The_Day : = Day(Natural_Utilities. Value_Of

(The_Date

(Left_Index ..

(Right_Index - l) )) ) ;

Left_Index := Right_Index + 1;

Result.The_Year := Year(Natural_Utilities.Value_Of

(The_Dat e

(Left_Index ..

The_Date' Last)) +

Natural (Century_Off s st) ) ;

end case ;

Right_Index := String_Utilities.Location_Of

(The_Character => Time_Separator,

In_The_String => The_Time);

Result.The_Hour := Hour(latural_Utilities.Value_Of

(The_Time

(The_Time'First ..

(Right_Index - 1)))) ;

Left_Index := Right_Index + 1;

Right_Index := String_Utilities.Location_0f

(The_Character => Time_Separator,

In_The_String =>

The_Time (Left_Index.. The_Time 'Last) ) ;

Result.The_Minute := Minute(Natural_Utilities. Value_Of

(The_Time

(Left_Index ..

(Right_Index - 1))));

Left_Index := Right_Index + i;

Right_Index := String_Utilities.Location_Of

(The_Character => Time_Separator,

In_The_String =>

The_Time(Left_Index..The_Time 'Last) ) ;

Result.The_Second := Second(Natural_Utilities.Value_Of

(The_Time

(Left_Index ..

(Right_Index - I)))) ;

Left_Index := Right_Index + I;

case Time_Form is

_hen Full =>

Right_Index := String_Utilities.Location_Of

(The_Character => Blank,

In_The_String =>
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The_Time(Left_Index ..

The_Time'Laet));

Result.The_Millisecond :=

' Millisecond(Watural_Utilities.Value_Of

(The_Time (Left_Index .. (Right_Index - I))));

Left_Index := Right_Index + I;

if Period'Value(The_Time(Left_Index ..

The_Time'Last)) = PM

then

if Result.The_Hour /= Noon then

Result.The_Hour :=

Result.The_Hour + Noon;

end if;

end if;

when Military =>

Result.The_Millisecond :=

Millisecond(Natural_Utilities.Value_Of

(The_Time (Left_Index .. The_Time'Last)));

end case;

return Result;

exception

when Constraint_Error =>

raise Lexical_Error;

end Value_Of;

function Duration_Of (The_Interval : in Interval)

return Duration is

begin

return (Duration(Integer(The_Interval.Elapsed_Days)

Seconds_Per_Day) +

Duration(Integer(The_Interval.Elapsed_Hours)

* Seconds_Per_Hour)

Duration(Integer(The_Interval.Elapsed_Hinutes)

Seconds_Per_Minute) +

Duration(The_Interval.Elapsed_Seconds) +

Duration(The_Interval.Elapsed_Milliseconds

1 1ooo));

end Duration_Of;

function Interval_Of (The_Duration : in Duration)

return Interval is

Result : Interval;

The_Seconds : Duration := The_Duration;
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begin

Result. Elapsed_Days := Duration_Utilities.Floor

(The_Seconds / Seconds_Per_Day);

The_Seconds :=

The_Seconds -

Duration(Integer(Result.Elapsed_Days)

* Seconds_Per_Day);

_esult.Elapsed_Hours :=

Hour(Duration_Utilities.Floor

(The_Seconds / Seconds_Per_Hour));

The_Seconds :=

The_Seconds -

Duration(Integer(Result.Elapsed_Hours)

* Seconds_Per_Hour);

Result. Elapsed_Minutes :=

Minute(Duration_Utilities.Floor

(The_Seconds / Seconds_Per_Minute));

The_Seconds :=

The_Seconds -

Duration(Integer(Result.Elapsed_Minutes)

* Seconds_Per_Minute);

Result.Elapsed_Seconds :=

Second(Duration_Utilities.Floor

(The_Seconds));

The_Seconds :=

The_Seconds - Duration(Result.Elapsed_Seconds);

Result.Elapsed_Milliseconds :=

Millisecond

(Duration_Utilities.Floor(The_Seconds * I000));

return Result;

end Interval_Of;

function Image_0f (The_Interval : in Interval)

return String is

begin

return (Image_Of(_atural(The_Interval.Elapsed_Days)) &

Time_Separator &

Image_0f(Natural(The_Interval.Elapsed_Bours))

Time_Separator k

Image_0f(Natural(The_Interval.Elapsed_Minutes)) &

Time_Separator &

Image_Of(Naturall(The_Interval.Elapsed_Seconds)) &

Time_Separator k

Image_Of(Natural(
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The_Interval. Elaps ed_Milliseconds) )) ;

end Image_Of ;

function Value_Of (The_Interval : in String)
return Interval is

Result : Interval;

Left_Index : Positive;

Right_Index : Positive;

begin

Right_Index := String_Utillties.Location_Of

(The_Character => Time_Separator,

In_The_String => The_Interval);

Result.Elapsed_Days := |atural_Utilities.Value_0f

(The_Interval

(The_Interval'First ..

(Right_Index - 1)));

Left_Index := Right_Index + 1;

Right_Index := String_Utilities.Location_Of

(The_Character => Time_Separator,

In_The_String =>

The_Interval(Left_Index ..

The_Interval'Last));

Result.Elapsed_Hours := Hour(Natural_Utilities.Value_0f

(The_Interval

(Left_Index ..

(Right_Index - 1))));

Left_Index := Right_Index + I;

Right_Index := String_Utilities.Location_Of

(The_Character => Time_Separator,

In_The_String =>

The_Interval(Left_Index ..

The_Interval'Last));

Result.Elapsed_Minutes :=

Minute(Natural_Utilities.Value_Of

(The_Interval

(Left_Index .. (Right_Index - 1))));

Left_Index := Right_Index + 1;

Right_Index := String_Utilities.Location_Of

(The_Character => Time_Separator,

In_The_String =>

The_Interval(Left_Index ..

The_Interval'Last));

Result.Elapsed_Seconds :=

Second(Natural_Utilities. Value_Of
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(The_Interval

(Left_Index .. (Right_Index - I))));

Left_Index := Right_Index + I;

Result.Elapsed_Milliseconds :=

Millisecond

(Natural_Utilities.Value_Of

(The_Interval

(Left_Index .. The_Interval'Last)));

return Result;

exception

when Constraint_Error =>

raise Lexical_Error;

end Value_Of;

end Calendar_Utilities;
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Appendix D: Package Calendar

This appendix shows the Calendar package of the Ada Reference Manual.

Copyright 1980, 1982, 1983 owned by the United States Government as

represented by the Under Secretary of Defense, Research and Engineering.

package calendar is

type time is private;

subtype year_number is integer range 1901 .. 2099;

subtype month_number is integer range 1 .. 12;

subtype day_number is integer range 1 .. 31;

subtype day_duration is duration range 0.0 .. 86_400.0;

function clock return time;

function year (date : time)

function month (date : time)

function day (date : time)

function seconds (date : time)

return year_number;

return month_number;

return day_number;

return day_duration;

procedure split (date : in

year : out

month : out

day : out

seconds : out

time;

year_number;

month_number;

day_number;

day_duration);

function time_of(year

month

day

seconds

: year_number;

: month_number;

: day_number;

: day_duration := 0.0) return time;

function "+" (left : time; right: duration) return time;

function "+" (left : duration; right: time ) return time;

function "-" (left : time; right: duration) return time;

function "-" (left : time; right: time )

return duration;

function "<" (left, right : time) return boolean;

function "<=" (left, right : time) return boolean;

function ">" (left, right : time) return boolean;

function ">=" (left, right : time) return boolean;

time error : exception;
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-- can be raised by time_of,

private

-- implementation-dependent

end;

"+" and "-"

:i

|
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Appendix E: Full Output from the Penelope

Verification

Portions of this text are copyright United States Government as represented by

the Under Secretary of De_nse, Research and Engineering. Portions of this text

are copyright Grady Booch, part of the Ads Booch components 1984-1992.

--! Verification status: Not verified

(21VCs generated; 2 VCs hidden; 16 VCs proved)
-- TRAIT Z IS

-- DECLARES

-- INTRODUCES

-- Int_identity: Int -> Int;

-- AXIOMS: FORALL [n:Int]

-- Int_identity: (Int_identity(n)=n);

-- END AXIOMS;

-- LEHHAS: FORALL [a:Int, m:Int, mi:Int, m2:Int]

-- mod_lo.sr: ((m>O)->(O<=(a HOD m)));

-- mod_upper: ((m>O)->((a HOD m)<m));

-- mod_ident: (((O<=a) AND (a<m))->((a HOD m)=a));

-- mod_transitive: (

(

(((ml/:O) AND (m2/=O)) AND ((ml H0D m2)=O))

AID

((a HOD ml)=O))

->

((a _OD m2):O));

--I mod_subtract: (

(((m>O) AND (m<=a)) AND (a<=((2*m)-l)))

->

((a HOD m)=(a-m)));

-- div_upper: (((O<=a) AND (a<m))->((a/m)=O));

-- END LEMHAS;

-- TRAIT fixed_point IS

-- DECLARES

-- SORT fixnum IS AnyRecordSort;

-- I_TRODUCES

-- good_fixnum: fixnum -> Bool;

-- abstract: fixnum -> Rational;

-- pair: Int, Int -> fixnum;

-- Int_to_fixnum: Int -> fixnum;

.... *": fixnum, fixnum-> fixnum;

.... *": fixnum, Int-> fixnum;

-- "*": Int, fixnum-> fixnum;
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.... /": fixnum, fixnum-> fixnum;

.... /": fixnum, Int-> fixnum;

.... +": fixnum, fixnum-> fixnum;

-- "-": fixnum, fixnum-> fixnum;

-- "<": fixnum, fixnum-> Bool;

-- "<=": fixnum, fixnum-> Bool;

-- ">": fixnum, fixnum-> Bool;

-- ">=": firuum_ fixnum-> Bool;

-- NonZero: fixnum-> Boo1;

-- IntegerPaxt : fixnum -> Int;

-- RealPart : fixnum -> fixnum;

-- Floor: fixnum -> Int;

-- CeilinE: fixnum-> Int;

--_ fixnum_abs: fixnum -> filnum;

-- AXIDNS: FDRALL [m:fixnum, n:fixnum, i:Int, j:Int]

-- good_fixnum: (good_fixnum(m)=(m.denom>O)) ;

-- concrete_equality : (

((m. numer=n, numer) AND (m. denom=n, denom))

->

(m=n)) ;

--J abstract_equality: (

(

(good_firuum(m) AND good_fixnum(n))

AND

( (m. numeren, denom) =Int_ident ity ( (m. denom*n, numer ) ) ) )

->

(abstract (m) =abstract (n)) ) ;

--J pair_numer: (pair(i, j).numer=i) ;

--J pair_denom: (pair(i, j).denom=j) ;

--_ Int_to_fixnum: (Int_to_fixnum(i)=pair(i, I)) ;

--I times_ff_numer: (

(good_fixnum(m) lid good_firuum(n))

->

((m,n). numer= Int_ ident ity ( (m. numer*n, numer) ) ) ) ;

--J times_ff_denom: (

(good_fixnum(m) £ND good_filnum(n))

->

( (m,n). denom=Int_ident it y ( (m. denom*n, denom) ) ) ) ;

--J times_fi_numer: (

good_f ixnum (m)

->

( (m* i). numer= Int_ ident it y ( (m. numer* i) ) ) ) ;

-- I times_fi_denom: (good_fixnum(m)-> ( (m,i). denom--m, denom)) ;

--f times_if_numer: (
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good_fixnum(m)
->

((i*m).numer=Int_identity((i*m.numer))));

--[ times_if_denom: (good_fixnum(m)->((i*m).denom=m.denom));

--[ divides_ff_numer: (

((good_fixnum(m) AND good_fixnum(n)) AND _onZero(n))

((a/n).numer=Int_identity((m.numer*n.denom))));

--[ divides_ff_denom: (

((good_fixnum(m) AND good_fixnum(n)) LID IonZero(n))
->

((m/n).denom=Int_identity((m.denom*n.numer))));

--[ divides_fi_numer: (

(good_fixnum(m) AND (i/=O))
->

((m/i).numer=m.numer));

--[ divides_fi_denom: (

(good_fixnum(m) AND (i/=O))

->

((m/i).denom=Int_identity((m.denom*i))));

--I plus_ff_numer: (

(good_fixnum(m) AND good_fixnum(n))

->

(

(re+n).numer

Int_identity(((m.numer*n.denom)+(n.numer*m.denom)))));

--[ plus_ff_denom: (

(good_fixnum(m) AND good_fixnum(n))

->

((m÷n).denom=Int_identity((m.denom*n.denom))));

--[ minus_ff_numer: (

(good_fixnum(m) LID good_fixnum(n))
->

(
(m-n). numer

Z

Int_identity(((m.numer*n.denom)-(n.numer*m.denom)))));

--[ minus_ff_denom: (

(good_fixnum(m) AND good_fixnum(n))

->

((m-n).denom=Int_identity((m.denom*n.denom))));

--[ fixnum_lt: (

(good_fixnum(m) AND good_fixnum(n))
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->

(
(m<n)

(

Int_iden_ity((m.numer*n.denom))

<

Int_identity((n.numer*m.denom)))));

--J fixnum_le: (

(good_fixnun(m) AND good_fixnum(n))

->

(
(m<=n)

(

int_idengity((m.numer*n.denom))

Int_identity((n.numer*m.denom)))));

--] fixnum_gt: (

(good_fixnum(m) AND good_fixnum(n))

->

(
(m>n)

Int_identity((m.numer*n.denom))

Int_identity((n.numer*m.denom)))));

--[ fixnum_ge: (

(good_firuua(m) AND good.fixnum(n))

->

(m>=n)

(

Int_identity((m.numer*n.denom))

>=

Int_identity((n.numer*m.denom)))));

--J IntegerPart: (

good_fixnum(m)

->

(IntegerPart(n)=Int_identity((n.numer/n.denom))));

--J RealPart: (

good_fixnum(m)
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->

(RealPart(m)=firuum_abs((m-Int_to_fixnum(IntegerPart(n))))));

--[ Floor: (

good_fixnum(m)

->

Floor(m)

Int_identity(

(
IF ((m.numer<O) AND ((m.numer NOD m.denom)/=O))

THEN ((m.numer/m.denom)-l)

ELSE (m.numer/m.denom)))));

--I fixnum_abs: (

good_fixnum(m)
->

(
fixnum_abs(m)

(IF (m<lnt_to_fixnum(O)) THEN ((-1)*m) ELSE m)));

--[ EMD AXIOMS;

--[ LEMNAS: FORALL [m:fixnum. n:fixnum, p:fixnum, i:Int.

n1:Int, d1:Int, n2:Int, d2:Int]

--[ good_fixnum_real_part: (

good_fixnum(m)

->

good_fixnum(RealPart(m)));

--I concrete_equality_pair: (FO&ALL n1:Int, d1:Int, n2:Int.

d2:Int::(((nX,d2)=(n2,dl))->(pair(nl, dl)=pair(n2, d2))));

--[ floorX: ((Int_to_fixnum(O)<=m)->(O<=Floor(m)));

--[ pair_plus: (

(pair(nl. dl)+pair(n2, d2))

pair((Int_identity((nl*d2))+Int_identity((n2*dl))).

(dl*d2)));

--1 pair_minus: (

(pair(nl. dl)-pair(n2, d2))

pair((Int_identity((nl*d2))-Int_identity((n2*dl))).

(di*d2)));

--I divides_pi: (FORALL n:Int, d:Int.

i:Int::(((d/=O) AND (i/=O))->((pair(n. d)/i)=pair(n. (U,i)))));

--I END LEMMAS;

--[ TRAIT sort_names IS
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-- DECLARES

-- SORT calendar_time_sort IS Int;

-- SORT century IS (teentiet_h, twentyfirst);

-- SORT years IS Int;

-- SORT months IS Int;

-- SORT year_days IS Int;

-- SORT month_days IS Int;

-- SORT absolute_days IS Int;

-- SORT hours IS Int;

-- SORT minutes IS Int;

-- SORT seconds IS Int;

-- SORT milliseconds IS Int;

-- SORT time_sort IS AnyRecordSort;

-- SORT duration_sort IS firuum;

-- SORT month_name_sort IS (January, February, March, April,

May, June, July, August, September, October, lovember, December);

--J SORT day_name_sort IS (Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday);

-- SORT period_sort IS (am, pm);

SORT time_format_sort IS (full, military);

SORT date_format_sort IS (full, month_day_year);

SORT interval_sort IS AnyRecordSort; •

SORT catu IS Int;

INTRODUCES

month_name_sort_tic_pos: month_name_sort -> Int;

month_name_sort_tic_val: Int -> month_name_sort ;

good_day_name: day_name_sort -> Bool;

day_name_sort_tic_pos i day_name_sort -> Int;

day_name_sort_tic_val: Int -> day_name_sort;

day_name_sort_increment : day_name_sort, Int -> day_name_sort;

milliseconds_tic_first: -> milliseconds;

seconds_tic_first: -> seconds;

minutes_tic_first: -> minutes;

hours_tic_first: -> hours;

years_tic_first: -> years;

months_tic_first: -> months;

months_tic_last: -> months;

month_name_sort_tic_first: -> month_name_sort;

month_name_sort_tic_last: -> month_name_sort;

time_sort_tic: -> time_sort;

month_days_tic: -> month_days;

extract_year: calendar_time_sort -> years;

extract_month: calendar_time_sort -> months;

extract_day: calendar_time_sort -> month_days;
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--[ extract_duration: calendar_time_sort -> duration_sort;

--_ seconds_to_duration: second_ -> duration_sort;

--J "+": calendar_time_sort, duration_sort -> calendar_time_sort;

--I "-": calendar_time_sort, duration_sort -> calendar_time_sort;

--I calendar_time_sort_identity:

calendar_time_sort -> calendar_time_sort;

-- duration_sort_identity: duration_sort -> duration_sort;

-- good_duration: duration_sort -> Boo!;

-- good_day: absolute_days -> Bool;

-- good_hour: hours -> Bool;

-- good_minute: minutes -> Bool;

-- good_second: seconds -> Bool;

--! good_millisecond: milliseconds -> Bool;

-- good_interval: interval_sort -> Bool;

--: AXIOMS: FORALL [the_duration:duration_sort, n:Int,

the_day_name:day_name_sort, offset:Int,

the_interval:interval_sort, the_day:absolute_days,

the_hour:hours, the_minute:minutes, the_second:seconds,

the_millisecond:milliseconds]

months_tic_first: (months_tlc_first=l);

months_tic_last: (months_tic_last=12);

month_pos_january: (month_name_sort_tic_pos(January)=O);

month_pos_february: (month_name_sort_tlc_pos(February)=l);

month_pos_march: (month_name_sort_tic_pos(March)=2);

month_pos_april: (month_name_sort_tic_pos(April)_);

month_pos_may: (month_name_sort_tic_pos(May)=4);

month_pos_june: (month_name_sort_tic_pos(June)=6);

month_pos_july: (month_name_sort_tic_pos(July)=6);

month_pos_august: (month_name_sort_tic_pos(August)--7);

month_pos_september: (month_name_sort_tic_pos(September)=8);

month_pos_october: (month_name_sort_tic_pos(October)=O);

month_pos_november: (month_name_sort_tlc_pos(November)=10);

month_pos_decsmber: (month_name.sort_tic_pos(Decelber)=ll);

month_val_O: (month_name_sort_tic_val(O)=Jannary);

month_val_i: (month_name_sort_tic_val(1)=February);

month_val_2: (month_name_sort_tic_val(2)=March);

month_val_3: (month_name_sort_tic_val(3)=ipril);

month_val_4: (month_name_sort_tic_val(4)=May);

month_val_5: (month_name_sort_tic_val(8)=June);

month_val_6: (month_name_sort_tic_val(6)=July);

month__al_7: (month_name_sort_tic_val(7)=iugust);

month_val_8: (month_name_sort_tic_val(8)=September);

month_val_9: (month_name_sort_tic_val(9)=October);

month_val_lO: (month_name_sort_tic_val(lO)=November);
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--I month_val_ll: (month_name_sort_tic_val(ll)=December) ;

-- ] good_day_name: (

good_day_name (th • _day_name)

((Monday<--the_day_name) OR (the_day_name<=Sunday))) ;

-- day_val_0: (day_name_sort_tic_val(0)=Monday) ;

-- day_val_l : (day_name_sort_tic_val(1)=Tuesday);

-- day_val_2: (day_name_sort_tic_val(2)=Wednesday) ;

-- day_val_3: (day_name_sort_tic_val(3)=Thursday); .

-- day_val_4: (day_name_sort_tic_val(4)=Friday) | -

-- day_val_5: (day_nams_sort_tic_val(_=Saturday) ;

-- day_val_6: (day_name_sort_tic_val(6)=Sunday) ;

-- first_millisecond: (milliseconds_tic_first=O);

-- first_second: (seconds_tic_first=O) ;

-- first_minute: (minutes_tic_first=0) ;

-- first_hour: (hours_ti¢_first=0) ;

-- first_year: (years_tic_first=1901) ;

-- first_month: (month_name_sort_tic_first=January) ;

-- last_month: (monZh_name_sort_tic_last=December) ;

-- duration_sort_identity: (

durat ion_sort_ identity (the_durat ion)

the_duration) ; ....

--] day_name_sort_incre=ent: (

day_name_s ort _incr ement (the_day_name, offset)

day_name_sort_t ic_val (

((day_name_sort_tic_pos (the_day_name) +offset) MOD 7)) ) ;

--I good_duratlon: (

good_duration(the_duration)

good_fixnum(the_durat ion) ) ;

-- ] good_day: (good_day (the_day) = (0<=the_day)) ;

--I good_hour: (

good_hour (the_hour)
=

((0<=the_hour) A_D (the_hour<24))) ;

--I good_minute: (

good_m inut e (the_m inut • )

((O<=the_minute) AND (the_minute<60))) ;

--I good_second: (

good_second(the_second)
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((O<=the_second) ABD (the_second<60)));

--] good_millisecond: (

good_millisecond(the_millisecond)

5

((O<=the_millisecond) AND (the_millisecond<iO00)));

--I Eood_interval: (

good_interval(the_interval)

(

(
(

(

good_day (the_ interval, elapsed_days)

AND

good_hour(the_interval, elaps ed_hours) )
AND

good_minute (the_interval. elaps ed_minut es) )

AND

good_second(the_interval, elapsed_seconds) )
AND

good_millisecond(the_interval, elapsed_milliseconds) ) ) ;

--J END AXIOMS;

--J LEMMAS: FORALL [the_day_name:day_name_sort, the_pos:Int,

the_second : seconds]

--J day_name_sort_tic_pos: (

(
(

(
(

(day_name_sort_tic_pos(Monday)=O)

fND

(day_name_sort_tic_pos(Tuesday)=l))

AND

(day_name_sort_tic_pos(Wednesday)=2))

AND

(day_name_sort_tic_pos(Thursday)=3))

(day_name_sort_tic_pos(Friday)=4))

AND

(day_name_sort_tic_pos(Saturday)=6))

AND

(day_name_sort_tic_pos(Sunday)=6));

--J day_name_sort_tic_pos_ranEe: (
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(O<:day_name_s ort_t ic_pos (the_day_name))

AND

(day_name _ s ort_t i c_po s (the _day_na_e) < =6) ) ;

--J day_name_sort_tic_val_range: (

((O<=the_pos) AND (the_pos<=6))

->

(
(Monday<=day_name_ sort _t ic_val (the_pos))

AND

(day_name_sort_tic_val (the_pos) <=Sunday) ) ) ;

--J seconds_to_duration: (

seconds_to_duration(the_second)

Z

pair(the_second, 1));

EFD LEF_AS;

TRAIT conversion_factors IS

DECLARES

INTRODUCES

days_to_hours: -> hours;

hours_to_minutes: -> minutes;

hours_to_seconds: -> seconds;

days_to_seconds: -> seconds;

minutes_to_seconds: -> seconds;

days_to_milliseconds: -> milliseconds;

seconds_to_milliseconds: -> milliseconds;

seconds_to_catu: -> catu;

milliseconds_to_catu: -> catu;

AXIOMS:

hours_to_minutes: (hours_to_minutes=60);

days_to_hours: (days_to_hours=24);

minutes_to_seconds: (minutes_to_seconds=60);

seconds_to_milliseconds: (seconds_to_milliseconds=lO00);

days_to_seconds: (

days_to_seconds

((days_to_hours*hours_to_minutes)*minutes_to_seconds));

hours_to_seconds: (

hours_to_seconds

(hours_to_minuteseminutes_to_seconds));

millissconds_to_catu: (milliseconds_to_catu>O);

seconds_to_catu: (

seconds_to_catu
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(ssconds_to_milliseconds*milliseconds_to_catu));

-- END AXIOMS;

-- LEMMAS:

-- END LEMMAS;

-- TRAIT time_representations IS

-- DECLARES

-- INTRODUCES

-- days_in_month: months, years -> month_days;

-- is_leap_year: years -> Bool;

-- is_non_leap_centennial: years -> Bool;

-- days_in_year: years -> year_days;

-- days_of_years_since_f900: years -> absolute_days;

-- seconds_since_t900: time_sort -> seconds;

-- days_since_Jan: months, years -> year_days;

-- day_name_of: years, year_days -> day_name_sort;

-- day_of_year: years, months, month_days -> year_days;

-- month_of: years, year_days -> months;

-- day_of_month: years, year_days -> month_days;

-- year_of: absolute_days -> years;

-- good_year: years -> Bool;

-- good_month: months -> Bool;

-- good_month_day: month_days -> Bool;

-- good_date: years, months, month_days, duration_sort -> Bool;

-- good_time: time_sort -> Bool;

-- good_year_and_day: years, year_days -> Bool;

-- day_nams_sort_val: Int -> day_name_sort;

-- time_of: years,

months,

month_days,

duration_sort -> calendar_time_sort;

--[ AXIOMS: FORALL [the_month:Int, the_year:Int,

the_time:time_sort, the_year_day:Int, ths_month_day:Int,

ths_absolute_day:Int]

--[ days_in_January: (days_in_month(l, the_year)=31);

--[ days_in_February: (

days_in_month(2o the_year)

(IF is_leap_year(the_year) THEN 29 ELSE 28));

-- days_in_March: (days_in_month(3, the_year)=31);

-- days_in_April: (days_in_month(4, the_year)=30);

-- days_in_Nay: (days_in_month(5, the_year)=31);

-- days_in_June: (days_in_month(6, the_year)=30);

-- days_in_July: (days_in_month(7, the_year)=31);

-- days_in_August: (days_in_month(8, the_year)=31);
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--I days_in_September: (days_in_month(9, the_year)=30);

--I days_in_October: (days_in_month(lO, the_year)=31);

--I days_in_November: (days_in_month(11. the_year)=30);

--I days_in_December: (days_in_month(12, the_year)=31);

--I leap_year: (

is_leap_year(the_year)

(

((the_year MOD 4)=0)
AMD

(NOT is_non_leap_centennial (the_year))) ) ;

--I non_leap_centennial: (

is_non_leap_centennial (the_year)

(((the_year ROD 100)=0) AND ((the_year MOD 400)/=0)));

--I days_in_year: (

days_ in_year (the_year)
=

(IF is_leap_year(the_year) THEN 366 ELSE 365));

--I days_since_lgo0_O: (days_of_years_since_1900(1900)=O) ;

--I days_since_1900_l: (

(the_year>1900)
->

(

days_of_years_since_lgOO(the_year)

(

days_in_year((the_year-1))
+

days_of_years_since_1900((the_yeax-1)))));

--[ days_since_January_O: (days_since_Jan(I, the_year)=O);

--I days_since_January_l: (

(the_month>l)

(

days_since_Jan(the_month, the_year)

(

days_in_month((the_month-1), the_year)
+

days_since_Jan((the_month-1), the_year))));

--I good_year: (

good_year(the_year)
Z
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((1901<=the_year) £ND (the_year<=2099)));

--I good_month: (

good_month(the_month)
I

((l<=the_month) AIID (the_month<=12)));

--[ good_month_day: (

good_month_day(the_month_day)
I

((l<=the_month_day) £ND (the_month_day<=31)));

--I good_t_e: (
good_t_e(the_t_e)

(
(

C
(

(
(

(

(
(

(

(
(

(
(1901<=the_time.the_yeax)

AND

(the_time.the_yeax<=2099))
AND

(1<=the_time.the_month))
AND

(the_time.the_month<=12))

AND

(1<=the_time.the_day))
AND

(

the_time.the_day

days_in_month(the_time.the_month,
the_time.the_yeax)))

AND

(O<=the_tfme.the_hour))
AID

(the_t_ae.the_hour<days_to_hours))
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AID

(O<=the_t ime. the_minute))

AND

(the_t ime. the_minut e<hours_to_minut es) )

AND

(O<=the_t ime. the_second) )

AND

(the_t ime. the_second<minutes_to_seconds) )

AND

(O<=the_t ime. the_millis •cond) )

AND

(the_tlme. the_millisecond<seconds_to_milliseconds) )) ;

--[ Eood_year_and_day: (

good_year_and_day (the_year, the_year_day)

(

((1901<=the_year) AND (the_year<=2099))

AND

(

(l<=the_year_day)

AND

(the_year_day<=days_in_year (the_year)) ))) ;

--[ day_name: (

day_name_of (the_year, the_year_day)

day_name_sort_tic_val (

(

(days_of_years_s inc e_ 1900 (the_year) + (the_year_day- 1))

MOD

7)));

--[ day_of_year: (

day_of_year(the_year, the_month, the_month_day)

(days_since_Jan(the_month, the_year)+the_month_day)) ;

--[ month_of: (

(

(days_since_Jan (the_month, the_year) <the_year_day)
AND

(

the_year_day

<=

(

days_since_Jan(the_month, the_year)
+
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days_in_month(the_month, the_year))))

->

(month_of(the_year, ths_year_day)=the_month));

--I day_of_month: (

day_of_month(the_year, the_year_day)

--I

--I

(

the_year_day

days_since_Jan(month_of(the_year, the_year_day),

the_year)));

year_of: (
(

(days_of_years_since_lgOO(the_year)<the_absolute_day)

A_D

(the_absolute_day<=days_of_years_since_lgoo((the_year+l))))

->

(year_of(the_absolute_day)=the_year));

seconds_siuce_1900: (

seconds_since_lgOO(the_time)

+

days_of_years_since_19OO(the_time.the_year)

days_to_seconds)

int_identity(

(
days_since_Jan(the_time.the_month,

the_time.the_year)

days_to_seconds)))

Int_identity((the_time.the_hour*hours_to_seconds)))

Int_identity((the_tims.the_minute*minutes_to_seconds)))

+

END AXIDMS;

LEMMAS: FORALL

duration_sort_identity(the_time.the_second)));

[the_year:years, the_month:months]
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--[ day_name_of: (day_name_of(1900, 1)=Tuesday);

--[ days_in_months: (

days_in_month(the_month, the_year)

(
IF (_he_month=l)

THEN 31

ELSE (

IF (the_month=2)

TEEN (IF is_leap_year(_he_year) THEN 29 ELSE 28)

ELSE (

IF (_he_month=3)

THEN 31

ELSE (
IF (the_month=4)

THEN 30

ELSE (

IF (the_month=5)

THEN 31

ELSE (

IF (_he_,.onth=6)

THEN 30

ELSE (

IF (_he_nonth=7)

THEN 31

ELSE (

IF (¢he_month=8)

THEN 3:1.

ELSE (

IF ($he_,.onth=9)

THEN 30

ELSE (
IF (_he_month=lO)

THEI 31

ELSE (

IF (the_month=N1)

THEN 30

ELSE

31))))))))))));
--[ number_of_months: (

good_mon_h(the'_onth)

->

(
(
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(
(

(
(

(
(

(
(

((the_month=l) OR (the_month=2))

OR

(the_month=3))

OR

(the_month=4))

OR

(the_month=5))

OR

(the_month=6))

OR

(the_month=7))

O_

(the_month=8))

OR

(the_month=9))

OR

(the_month=lO))

OR

(the_month=ll))

DR

(the_month=12)));

--I days_in_month_range: (

good_month(the_month)

->

(
(l<=days_in_month(the_month, the_year))

AND

(days_in_month(the_month, the_year)<=31)));

--[ days_since_January_positive: (

good_month(the_month)

->

(O<=days_since_3an(the_month, _he_year)));

--I days_since_January_upper_bound: (

(good_month(the_month) A_D good_year(the_year))

->

(days_since_Jan(the_month, the_year)<=335));
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days_in_year_identity : (

days_in_year(the_year)

(
days_since_Jan(months_tic_last, the_year)

+

days_in_month(months_tic_last, the_year) ) ) ;

-- END LEMMAS;

-- TRAIT time_representation_conversions IS

-- DECLAKES

-- I_TRODUCES

-- time_to_cal_time: time_sort -> calendar_time_sort ;

-- cal_time_to_time: calendar_time_sort -> time_sort;

-- round_ca/_t ime_down_t o_millis econds:

calendar_time,sort-> calendar,time_sort;

--_ interval_to_duration: interval_sort -> duration_sort ;

--J round_duration_down_to.milliseConds:

duration_sort -> time_sort;

--_ duration_to_interval: duration_sort -> interval_sort ;

--[ AXIOMS: FORALL [the,time:£_e_sort,

the_calendar_t ime :calendar_t ime_sort,

the_interval :interval_sort, the_duration: duration_sort,

the_s econd :seconds]

--I t_e_to_cal_t_e: (

t ime_to_ cal _t ime (the_t ires)

(

(seconds_since_ 1900 (the_time. the_year) _seconds_to_catu)
+

( , !

calendar_t ime_s ort_ identity (the_t ime. the_mill is econd)

milliseconds_to_catu))) ;

--i round_cal_time_down: ( ......

round_cal_t ime_down_t o_millis econds (the_calendar_t ime)

(

the_ calendar_t ime

(the_calendar_time MOD milliseconds_to_catu))) ;

--[ time_to_cal_time: (

(
t ime_t o_cal_t ime (the_t ime)
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z-ound_cal_t J_e_dolrn_t o_millise conds (the_calendar_time))

->

(cal_t ime_to_t ime (the_calendar_t ime) =the_t ime) ) ;

--I interval_to_duration: (

int erval_to_duration(the_interval)

(
(

+

+

(

/

seconds_to_duration(

(the_interval.elapsed_daysedays_to_seconds))

seconds_to_duration(

(the_interval.elapsed_hoursehours_to_seconds)))

seconds_to_duration(

(the_intsrval.elapsed_minutes*minutes_to_ssconds)))

seconds_to_duration(the_interval.elapsed_seconds))

seconds_to_duration(the_interval.elapsed_milliseconds)

seconds_to_milliseconds) ) ) ;

--] good_interval_to_good_duration: (

(
good_interval(the_interval)

liD

(the_durat ion=int erval_to_durat ion(the_int erval) ) )

->

good_duration(the_duration)) ;

-- I round_duration_doen: (

round_durat i on_doen_t o_mill i seconds (the _durat ion)

(
seconds_to_duration(

Floor((the_duration*seconds_to_millissconds)))

/
seconds_to_milliseconds));

--J good_seconds_to_good_duration: (

good_second(the_second)

->

good_duration(seconds_to_duration(the_second)));
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--[ END AXIOMS;

--[ LF_MA$: FORALL [dl:duration_sort, d2:duration_sort,

m: duration_sort, n: durat ion_sort, p: durat ion_sort]

--[ good_duration_pair: (FOP_LL n:Int,

d: Int : :((d/=O) ->good_durat ion (pair (n, d) ) )) ;

--[ good_duration_sum: (

(good_duration(dl) AHD good_duration(d2))

->

good_duration((dl+d2)) ) ;

--J subtract_duration_equals: (FORALL 1:duration_sort,

n: durat ion_sort, p: durat ion_sort ::((m= (n-p))-> ((m+p) =n) ) ) ;

-- I EID LEMMAS;

PACKAGE builtin IS

TYPE duration IS RECORD

sign: gnteger;

whole_part : integer;

fraction : integer;

E_D RECORD ;

TYPE string IS ARRAY(integer) OF character;

_¢NCTION duration_ize(seconds : II integer) REARM duration;

--I WHERE

-- J REIqJRN seconds_to_duration(seconds) ;

--J RETURN result SUCH THAT good_duration(result);

-- J END WHERE;

EID builtin;

WI_ builtin;

PACKAGE calendar IS

TYPE tiae IS NEW integer;

TYPE year_number IS NEW integer;

TYPE month number IS NEW integer;

TYPE day_number IS NEW integer;

TYPE day_duration IS NEW builtin.duration;

FUNCTION clock RETURN time;

--l WHERE

--I END WHERE;

FUNCTION year(date : Ii time) RETUI_ year_number;
--I WHERE

--] REARM extract_year(date);

--[ END WHERE;

FUNCTION month(date : Ii time) RETUPJi month_number;
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-- I WHERE

--1 RE_qJRN extract_month(date) ;

-- I END WHERE;

FUNCTION day(date : IN time) RETURN day_number;

--[ WHERE

--[ RETURN extract_day(date);

--[ END WHERE;

FUICTIOi seconds(date : IN time) RETURi day_duration;

--I WHERE
--I RETURN extract_duration(date);

--J RETUR| result SUCH THAT good_duration(result);

--I END WHERE;

PROCEDURE split(date : IM time;

year : OUT year_number;

month : OUT month_number;

day : OUT day_number;

seconds : OUT day_duration);

-- WHERE

-- OUT (year=extract_year(date));

-- OUT (month=extract_month(date));

-- OUT (day=extract_day(date));

-- OUT (seconds=extract_duration(date));

-- END WHERE;

FUNCTION time_of(year : IN year_number;

month : IN month_number;

day : IN day_number;

seconds : IN day_duration) RETURN time;

--[ WHERE

--[ IN good_date(year, month, day, seconds);

--[ RETURN time_of(year, month, day, seconds);

--[ END WHERE;

FUNCTION "+"(left : IN time;

right : IN builtin.duration) RETURN time;

--I WHERE

--I RETURN (left+right);

--J END WHERE;

FUNCTION '.... (left : IN time;

right : IN builtin.duration) RETURN time;
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--I WJErCE

--J RETURN (left-right) ;

-- [ END WHERE;

FUNCTION "<"(left, right : II time) RETUR_ boolean;

-- I WHERE

-- I RETUI_! (left<right) ;

-- [ END WHERE;

FUNCTIOH "<="(left, right : HI time) RETU_ boolean;

-- l wREe.a.'.

--I RETURN (left<=right) ;

--I EJD WHERE;

FUNCTION ">"(left0 right : IN time) REar boolean;

--I _RE

--_ RETURN (left>right) ;

-- I END WHERE;

_CTION ">="(left, right : IN time) RETU_ boolean;

-- I WHERE

--I RETURN (left>=right) ;

-- l EHD WHERE;

FUNCTION day_duration_ize(eeconde : I_ integer)

RETU_day_duration;

--1 WHERE

--[ RETURJ seconds_to_duration(seconds);

--I RETUU result SUCH THAT good_duration(result);

--I F_ WHERE;

EID calendar;

WITH builtin;

PACKAGE integer_utilities iS

TYPE number IS NEW integer;

TYPE base IS NEW integer;

TYPE numbers i:S ARRAY(integer)OF number;

_JNCTION min(ieft : IN number;

right : IN number) RETURN number;

--I WHERE

--[ RETURN (IF (left<right) THE][ left

--[ END WHERE;

ELSE right) ;
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FUWCTION min(the_numbers : IN numbers) RETURN number;

--[ WHERE

--[ END WHERE;

FUNCTION maxCleft : IN number;

right : IN number) RETURN number;

--I WHERE

--I RETURN (IF (left>right) THEM left

--J END WHERE;

ELSE right);

FUNCTIOI max(the_numbers : IN numbers) RETURN number;

--I WHERE
--I HID WHERE;

FUNCTION is_positive(the_number : IJ number) RETURN boolean;

--[ WHERE

--J RETURN (the_number>O);

--J END WHERE;

FUNCTION is_natural(the_number : IN number) RETURN boolean;

--J WHERE

--l RETURN (the_number>=O);

--[ END WHERE;

FUNCTION is_negative(the_number : IN number) RETURN boolean;

--j WHERE

--I RETURN (the_number<O);

--I END WHERE;

FUNCTION is_zero(the_number : IN number) RETURN boolean;

--I WHERE

--[ RETURN (the_number=O);

--[ EID WHERE;

FUNCTION is_oddCthe_number : IN number) RETURN boolean;

--I WHERE

--[ RETURN (Cthe_number HOD 2)=I);

--J END WHERE;

FUNCTION is_evenCthe_number : IN.number) RETURN boolean;

--I WHERE

--J RETURN ((the_number MOD 2)=0);

--I END WHERE;
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FUNCTION image_of(the_number : IN number;

with_the_base : IN base) RETURN builtin.string;

--i WHERE

-- 1 END WHERE;

FUNCTION value_of(the_image : IN builtin.etring;

with_the_base : IN base) RETURN number;

-- J WHERE

-- J END WHERE;

END integer_utilities ;

WITH builtin;

PACKAGE duration_utilities IS

TYPE number IS NEW builtin.duration;

FUNCTION integer_part(the_number : IN number) RETURN integer;

-- I WHERE

-- l IN good_duration(the_number) ;

-- I RETURN IntegerPart (the_number) ;

--[ END WHERE;

FUNCTION rea/_part(the_number : IN number) RETURN number;
-- J WHERE

-- J IN good_duation(the_number) ;

-- I RETURN RealPart (the_number) ;

--1 RETURN result SUCH THAT good_duration(result);

--J END WHERE;

FUNCTION floor(the_number : IN number) RETURN integer;

-- I WHERE

-- J IN good_duration(the_number) ;

-- J RETURN Floor(the_number) ;

--_ END WHERE;

FUNCTION ceiling(the_number : IN number) RETURN integer;
-- I WHERE

--J IN good_duration(the_number) ;

-- J RETURN Ceiling(the_number) ;

--J END WHERE;

END duration_utilities;

WITH builtin, calendar;

PACKAGE calendar_utilities IS
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TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

natural IS HEW integer;

string IS ARRAY(integer) OF character;

year IS NEW calendar.year_number;

month IS NEW integer;

day IS NEW integer;

hour IS NEW integer;

minute IS NEW integer;

second IS NEW integer;

millisecond IS NEW integer;

time IS RECORD

the_year: year;

the_month: month;

the_day: day;

the_hour: hour;

the_minute : minute;

the_second : second;

the_millisecond: millisecond;

END RECORD ;

TYPE interval IS RECORD

elapsed_days : natural;

elapsed_hours : hour;

elapsed_minutes : minute;

elapsed_seconds : second;

elapsed_milliseconds : millisecond;

END RECORD ;

TYPE year_day IS NEW integer;

TYPE month_name IS (january, february, march, april, may,

june, july, august, september, october, november, december);

TYPE day_name IS (monday, tuesday, eednesday, thursday.

friday, saturday, sunday);

TYPE period IS (am, pm);

TYPE time_format IS (full. military) ;

TYPE date_format IS (full, month_day_year) ;

FUNCTIOH natural_ize(m : IN integer) RETURN natural;

-- [ WHERE

--[ IN (O<=m);

--1 RETURN m;

-- [ END WHERE;

FUNCTION integer_ize(m : IN integer) RETURN integer;

--1 WHERE

--1 RETURN m;

--[ END WHERE;
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FUNCTION year_day_ize(m : IN integer) RETURN year_day;

-- J WEERE
--I IN ((1<=,.) AND (m<=3ee));

--J RETURN m;

-- J END WHERE;

FUNCTION day_ize(m : in integer) RETURN day;

--I WRERE

--[ IN ((l<=m) AND (m<=31));

--I RETUR! m;

--[ END WHERE;

FUNCTION ho_r_ize(m : IN integer) RETURN hour;

--I WHERE
--I IN ((O<=m) AND (m<24));

--I RETURN m;

--I END WHERE;

FUNCTION minute_ize(m : IN integer) RETURN minute;

--I WHERE

--I IN ((0<=m) £ND (m<60));

--l RETURN m;

--I END WHERE;

FUNCTION second_izs(m : IN integer) RETURN second;

--I WHERE

--I IN ((O<=m) AND (m<60));
--I It_"r'd_tzm;
--I RED WHERE;

FUNCTION millisecond_ize(m : IN integer) RETUR] millisecond;

--I WHERE

--I In ((o<=m)AND (m<iO00));
--I RETURN m;

--I END WHERE;

FUICTXON millisecond_ize(m : in buiitin.duration)

RETURMmillisecond;

--I WHERE

--1 RETURN Floor((lOOO*m));

--I EID WHERE;

FUNCTION year_number_ize(the_year : IN year)
RETURN calendar.year_number;
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--I WHE_

--[ IN good_year(the_year) ;

--[ RETURN the_year;

-- [ END WHERE;

FUNCTION month_number_ize(the_month : II month)

RETURN calendar.month_number;

--[ WHERE

--[ IH good_month(the_month);

--[ RETURN the_month;

--[ END WHERE;

FUICTION day_number_ize(the_day : II day)

RETURN calendar.day_number;

--I WHERE

--] IN good_month_day(the_day);

--[ RETURN the_day;

--[ END WHERE;

FUNCTION year_tic_first RETURN integer;

--I WHERE

--[ RETURN years_tic_first;

--[ END WHERE;

FUNCTION month_name_tic_pos(the_month : IN month_name)

RETURN month;

--I WHERE

--[ RETUP_ month_name_sort_tic_pos(the_month);

--[ END WHERE;

FUICTION month_name_tic_val(index : IN integer)

RETURN[ month_name;

--I WHERE

--J IN good_month((index+l));

--[ RETURN month_name_sort_tic_val(index);

--I END WHERE;

FUNCTION day_name_tic_pos(the_day : IN day_name)

RETURN integer;

--[ WHERE

--[ RETURN day_name_sort_tic_pos(the_day);

--1 END WHERE;

FUNCTION day_name_tic_val(index : IN integer) RETUR| day_name;
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--I WHERE

--[ RETURN day_name_sort_tic_val(index);

--[ RAISE constraint_error <=> IN (

(index<O)

OR

(index>6));

--[ END WHERE;

FUNCTION millisecond_tic_first RETUPJ millisecond;

--[ WHERE

--[ RETURN milliseconds_tic_first;

--J FJD WHERE;

FUNCTION second_tic_first RETURN second;

--J WHERE

--[ RETURN seconds_tic_first;

--[ END WHERE;

FUNCTION minute_tic_first RETURN minute;

--J WHERE

--[ RETURN minutes_tic_first;

--[ END WHERE;

FUNCTION hoar_tic_first RETUP_ hour;

--I WHERE

--[ REI"0]IN boars_tic_first;

--[ END WHERE;

FUNCTION month_tic_firstRETUP_month;

--j WH_RE

--] RETUP_months_tic_first;

-- i Era) WHERE;

FUNCTION month_tic_last RETU_ month;

--[ WH_ _:

--[ RETURN months_tic_last;

--[ END WHERE;

FUNCTION is_leap_year(the_year : IN year) RETURN boolean;

--J WHERE
--[ RETURN is_leap_year(the_year);

--[ END WHERE;

FUNCTION days_in(the_year : IN year) RETUI_ year_day;
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--{ WHERE

--I IN good_yea_(the_year);

--I REI"dRH days_in_year(the_year);

--I EHD WHERE;

_JNCTION days_in(the_month : IN month;

the_year : IN year) REI_JRN day;

--I WHERE

--i IN good_month(the_month);

--[ IN good_year(the_year);

--[ REI_u'RN days_in_month(the_month, the_year);

--I END WHERE;

F_JNCTION month_of(the_month : IN month) P_RN month_name;

--I WHERE

--I IN good_month(the_jzonth);

--I REI_JRN month_name_sort_tic_val((the_month-1));

--[ END WHERE;

FUNCTION month_of(the_month : IN month_name) RETURN month;

--[ WHERE

--J RETURN (month_name_sort_tic_pos(the_month)+1);

--I END WHERE;

FUNCTION day_of(the_year : IN year;

the_day : IN year_day) P_E_"JRN day_name;

--I WHERE
--[ IW good_ysar_and_day(the_year, the_day);

--I RE_'u_ day_name_of(the_year, the_day);

--I END WHERe;

_CTION day_of(the_time : IN time) RETUP_ year_day;

--I WHERE

--l IN good_time(the_time);

--[ RE_P_ day_of_year(the_time.the_year,

the_time.the_month, the_time.the_day);

--I END WHERE;

_NCTION time_of(the_year : IN year;

the_day : IN year_day) RETURN time;

--I WHERE
--] IN good_year_and_day(the_year, the_day);

--I RETURN t SUCH THAT (

(
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(
(

(
(

(t. the_year=the_year)

AND

(t.the_month=month_of(the_year, the_day)))

AND

(t.the_day=day'of_month(the_year0 the_day)))

AND

(t.the_hour=O))

AND

(t.the_minute=O))

AND

(t.the_second=0))

AND

(t.the_millisecond=0));

--[ END WHERE;

FUNCTION period_of(the_time : IN time) RETURN period;

--[ WHERE

-- [ II good_time(the_time) ;

--[ RETURN (IF (the_time.the_hour<A2) THEN am ELSE pm);

--[ END WHERE;

FUECTI01 time_of(the_time : I| time) RETURH calendar.time;

--I WHERE

--[ IN good_time(the_time) _:

--[ P_TURN time_to_cal_time(the_time) ;

-- I END WHEI_E;

FUNCTION time_of(the_time : IN calendar.time) RETUFtN time;

-- I WHERE

--I RETURN cal_time_to_time(the_time) ;

--I END WHERE;

FUNCTION duration_of(the_interval : IN interval)

RETURN built in. durat ion;

--I WHE_
--I RETURN interval_to_duration(the_interval) ;

--I RETUR_ result SUCH THAT good_duration(result);

--I END WHERE;

FUNCTION interval_of(the_duration : IN builtin.duratlon) RETURN
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interval;

-- [ WHERE

--[ RETURN duration_to_interval(the_duration) ;

-- [ END WHERE;

END calendar_utilities ;

WITH integer_utilities, duration_utilities, builtin;

PACKAGE BODY calendar_utilities IS

TYPE month_day IS ARRAY(month) OF day;

century_offset : Integer := 1900;

days_per_year : year_day := 365;

first_day : day_name := tuesday;

seconds_per_minute : Integer := 60;

seconds_per_hour : Integer := (60*seconds_per_ninute);

seconds_per_day : Integer := (24*seconds_per_hour);

milliseconds_per_second : Integer := i000;

noon : Integer := 12;

time_separator : Character := _'';

date_separator : Character := _/_;

blank : Character := ' ';

comma : Character := ', ';

zero : Character := '0';

FUNCTION "+"(m, n : IN builtin.duratlon)

RETURN built in. durat ion;

--I WHERE

--[ IN good_duration(m);

--J II good_duration(n);

--[ RETURN (m+n);

--[ RETURN result SUCH THAT good_duration(result);

--1 END WHERE;

FUNCTIOi ..... (m, n : Ii builtin.duration)

RETU_ builtin.duration;

--[ WHERE

--[ II good_duration(m);

--[ II good_duration(n);

--U RETURN (n-n);
--U RETURN result SUCH THAT good_duration(result);

--1 EIID WHERE;

FUICTION "e"(n, n : II builtin.duration)

RETURN builtin.duration;

--1 WHERE
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--[ IN good_duration(m);

--[ IW good_duratlbn(n);

--I RETURN (m,n);

--[ REI_JPJI result SUCH THAT good_duration(result);

--[ END WHERE;

FUNCTION "/"(m, n : IN builtin.duration)

RJ_22/RJlbuiltin.duration;

-- WHERE

-- IN good_duration(m);

-- IN good_duration(n);

-- IN (n/=Int_to_fixnm,(O));

-- I_ETUI_ (_'n);

-- REI_JRJI result SUCH THAT 8ood_duratlon(result);

-- Eli) WHEILE;

Pq]NCTION "*"(m : IN builtin.duration;

n : IN integer) RE22]RN builtin.duration;

--i WHE_

--[ IN good_duration(L);

--[ _TU_ (m,n);
--] RETURN result SUCH THAT good_duration(result);

--[ END WHERE;

FUNCTION "/"(m : IN builtin.duration;

n : IN integer) RE2"dRN builtin.duration;

--I WHERE

--[ IN good_duration(m);

--[ IN (n/=O);

--I RE'In/R,1(m,n);

--[ RETURN result SUCH THAT good_duration(result);

--[ END WHERE;

FUNCTION days_per_monthCthe_month : IN month) RETURN integer;

--i WHERE

--[ IN ((l<=the_month) AND (the_month<=12));

RSWURN(--I
C

C
C

(
C

((((((month_days_tic[I=>313)[2=>28])[3=>31])
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-- ] END WHERE;

[4=>30] ) [5=>31] ) [6=>30] ) [7=>35] ) [8=>31] )

[9=>30])[10=>31])[11=>30])[12=>31])

[the_month] ) ;

FUNCTION is_leap_year(the_year : IN year) RETUP_ Boolean

--[ WHERE * * *

--[ RETURN is_leap_year(the_year) ;

--[ END WHERE;

--! VC Status: proved

--! BY instantiation of axiom leap_year

in trait time_representations

-- ! WITH the_year FOR the_year:Int

--! BY instantiation of axiom non_leap_centennial

in trait time_representations

--! WITH the_year FOR the_year:Int

--! BY instantiation of lemma rood_transitive in trait Z

--! WITH 100, 4, the_year FOR ml:Int, m2:Int, a:Int

--! BY left substitution of I

--! BY left substitution of 2

--! BY simplification

--! BY synthesis of TRUE

--! []

IS

BEGIN

IF ((the_year NOD I00)=0) THEM

REI_URN ((the_year MOD 400)--0);

ELSE

RETURN ((the_year MOD 4)=0) ;

END IF;

END is_leap_year;

FUNCTION days_in(the_year : I| year) P_I"UTJ year_day

-- l WHERE

--1 GLOBAL days_per_year: I| ;

--I Ii (days_per_year=385) ;

-- [ RETURN days_in_year(the_year) ;

--1 END WHERE;

--I VC Status: proved

--! BY axiom days_in_year in trait time_representations

-- ! WITH the_year FOR the_year: Int

--1 substituting for left
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--! BY simplification

--! BY synthesis of TRUE

--! []

IS

BEGIN

IF is_leap_year(the_year) THEi

RETURN (days_per_year+l) ;
ELSE

RETU_ days_per_year;

END IF;

END days_in; .........................

FUNCTION days_in(the_month : IN month;

the_year : IN year) RETURN day

--[WHERE***

--[ II good_month(the_month);

--[ IN good_year(the_year);

--[ RETURN days_in_month(the_month, the_year);

--[ END WHERE;

--f VC Status: proved

--I BY axiom month_poe_february in trait sort_names

--! WITH FOR.

--! substituting for left "

--! BY ins!an!in!ion of lemma number_of_months

in trait time_representations

--! WITH the_month FOR the_month:In!

--! BY analysis of IMPLIES, in 3

--_ BY hypothesis

--! AND THEN

--! BY contradiction, in 1

--! BY axiom good_month in trait time_representations

--! WITH the_month FOR the_month:In!

--! substituting for left

--! BY contradiction, in 1

--! BY lemma days_in_months in trait time_representations

--1 WITH the_month, the_ysarFOR the_month:in!,

the_year:Int

--! substituting for left

--! BY cases, using (the_month=l)
--! CASE TRUE

--! BY left substitution of 4

--! BY synthesis of TRUE
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--!

--t

CASE FALSE

BY cases, using (the_month=2)

CASE TRUE

BY left substitution Of 5

BY axiom days_in_February

in trait time_representations

WITH the_year FOR the_year:Int

substituting for left

BY simplification

BY synthesis of TRUE
CASE FALSE

BY simplification

BY cases, using (the_month=3)

CASE TRUE

BY left substitution of 4

BY synthesis of TRUE
CASE FALSE

BY cases, using (_he_month=4)

CASE TRUE

BY left substitution of 5

BY synthesis of TRUE

CASE FALSE

BY cases, using (the_month=5)

CASE TRUE

BY left substitution of 6

BY synthesis of TRUE

CASE FALSE

BY cases, using (the_month=6)

CASE TRUE

BY left substitution of 7

BY synthesis of TRUE

CASE FALSE

BY cases, using (the_month=7)

CASE TRUE

BY left substitution of 8

BY synthesis of TRUE

CASE FALSE

BY cases, using (the_month=8)

CASE TRUE

BY left substitution of 9

BY synthesis of TRUE

CASE FALSE

BY cases, using (the_month=9)
CASE TRUE
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w--

[]

BY left substitution of %0

BY synthesis of TRUE

CASE FALSE

BY cases, using (the_month = 10)

CASE TRUE

BY left substitution of 11

BY synthesis of TRUE
CASE FALSE

BY cases, using (the_month = 11)

CASE TRUE

BY left substitution of 12

BY synthesis of TRUE

CASE FALSE

BY cases, using (the_month : 12)

CASE TRUE

BY left substitution of 13

BY synthesis of TRUE

CASE FALSE

BY array simplification

BY simplification

BY synthesis of TRUE

IS

BEGIN

IF (the_month=(month_name_tic_pos(february)+l)) THEN

IF is_leap_year(the_year) THEN

RETUR_ (days_per_month((month_name_tic_pos(february)+l))

+1);

ELSE

RETURN days_per_month(the_month);

END IF;

ELSE

_ETURN days_per_month(the_month);

END IF;

END days_in;

FUNCTION month_of(the_month : IN month) RETUP_month_name

--[ WHERE • • •

--[ IN good_month(the.month);

--J RETURN month_name_sort_tic_val((the_month-1));

--[ END WHERE;

--! VC Status: proved
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--! BY s_thesis of TRUE

--!Q

IS

BEGIN

RETU_ month_name_t ic_val ( (the_month- 1) ) ;

END month_of;

FUNCTION month_of(the_month : IN month_name) RETURN month

--I WHERE * * *

-- I RETURN (month_name_sort_tic_poe (the_month) +1) ;

--I _ WHERE;

--! VC Status: proved

--! BY synthesis of TRUE

--! []

IS

BEGIN

RETURN (month_name_tic_pos(the_month)+l) ;

END month_of ;

FU|CTI0] day_of(the_year : 11 year;

the_day : I| year_day) RETURN day_name

-- WHERE

-- GLOBAL first_day : IH ;

-- IN (first_day=tuesday) ;

-- IN good_year_and_day(the_year, the_day) ;

-- RETURN day_name_of(the_year, the_day) ;

-- E]D WHERE;

-- VC Status: proved

-- BY contradiction, in 2

-- BY axiom good_year_and_day in trait time_representations

-- WITH the_year, the_day FOR the_year: Int,

the_year_day: Int

--! substituting for left

--! BY contradiction, in 2

--! BY axiom first_year in trait sort_names

-- _ WITH FOR

--! substituting for left

--! BY simplification

--! BY axiom day_name in trait time_representations

--! WITH 1901, I FOR the_year:Int, the_year_day:Int
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-- substituting for left

-- BY axiom days_since_lgo0_1 in trait time_representations

-- WITH 1901 FOR the_year:Int

-- substituting for left

-- BY axiom days_since_1900_O in trait time_representations

-- WITH FOR

-- substituting for left

-- BY claimin E (days_in_year(1900)=365)

-- BY axiom days_in_year in trait time_representations

--_ WITH 1900 FOR the_year:Int

--' substituting for left

-- BY instantiation of axiom leap_year

in trait time_representations

--! WITH %900 FOR the_year:Int

--! BY instantiation of axiom non_leap_centennial in trait

time_representations

--!

----!

--! []

--! WITH 1900 FOR the_year:Int

--! BY left substitution of 6

--! BY left substitution of 7

--! BY synthesis of TRUE

--! THEN

--! BY instantiation of axiom day_val_%

in trait sort_names

WITH FOR

BY simplification

BY synthesis of TRUE

IS

resttlt : day_name := first_day;

index : integer;

PP_C_t_ increment(the_day : Ii OUT day_name;

offset : IN natural)

--I WHERE

--_ IN good_day_name(the_day);

--_ IN (offset>=O);

--I IN (offset<=6);

--I OUT (

the_day

day_name_sort_increment(IN the_day, offset));

--[ fir,IT good_day_name(the_day);

--I END WHERE;

--! VC Status: proved
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--! BY simplification

--! BY instantiation of lemma day_name_sort_tic_pos_range

in trait sort_names

-- ! WITH the_day FOR the_day_name:day_name_sort

--! BY simplification

--! BY axiom day_name_sort_increment in trait sort_names

--! WITH the_day, offset FOR

the_day_name: day_name_sort, offset :Int

--I substituting for left

--! BY instantiation of lemma rood_lower in trait Z

--! WITH 7, (day_name_sort_tic_pos(the_day)+offset)

FOR m:Int, a:Int

--! BY instantiation of lemma nod_upper in trait Z

-- ! WITH 7, (day_name_sort_tic_poe (the_day) +offset)

FOR m:Int, a:Int

--! BY axiom good_day_name in trait sort_names

-- _ WITH

day_name_sort_tic_val (

((day_name_sort_tic_pos (the_day)+offset) MOD 7)) FOR

the_day_name: day_name_sort

--! substituting for left

--! BY instantiation of lemma day_name_sort_tic_val_range

in trait sort_names

-- ! WITH

((day_name_sort_tic_pos(the_day)+offset) MOD 7) FOR

the_pos :Int

--! BY simplification

--! BY instantiation of lemma rood_subtract in trait Z

--! WITH 7, (day_name_sort_tic_pos(the_day)+offset)

FOR m: Int, a: Int

--! BY simplification

--! BY cases, using (

(day_name_sort _t ic_pos (the_day) +offset)

<

7)
-- ! CASE TRUE

--! BY lemma mod_ident in trait Z

-- ! WITH (day_name_sort_tic_pos (the_day) +offset),

7 FOR a:Int, n:Int

--! substituting for left

-- I BY simplification

--! BY synthesis of TRUE

--! CASE FALSE

--! BY simplification
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IS

BY synthesis of TRUE

BEGIN

the_day:=day_name_ti¢_val((day_name_tic_pos(the_day)+

offset));

EXCEPTION

WHEN constraint_error =>

the_day:=day_name_tic_val((

(day_name_tic_pos(the_day)+offset)-7));

END increment;

BEGIN

index:=(year_tic_first()+1);

--! VC Status: ** not proved *$

--! BY simplification

--! BY instantiation of axiom day_name

in trait time_representations

--I WI_ (index-l), I FOE the_ysar:Int, the_year_day:Int

--! BY instantiation of lemma day_nams_sort_tic_val_range in

trait sort_names

--! WITH

((days_of_years_since_1900((index-l))+l) NOD 7) FOR

the_pos:Int

--! BY instantiation of lemma mod_uppsr in trait Z

--! WITH 7, (days_of_ysars_since_lgOO((indsx-1))+l) FOE

m:Into a:Int

--! BY instantiation of lemea mod_lower in trait Z

--! WITH 7, (days_of_years_since_1900((index-1))+l) FOE

m:Int, a:Int

--! BY axiom good_day_name in trait sort_names

--! WITH result FOE the_day_name:day_name_sort

--! substituting for left

--! BY simplification

--! BY synthesis of IF,

--! 1. (years_tic_first<index)

--I 2. (indsx<=(1+ths_year))

--! 3. (result=day_name_of((indsx-l), I))

--! 4. (result

day_name_sort_tic_val((days_of°ysars_since_lgoo((index-1))



APPENDIX E 109

ROD

7)))

--i 6. (o
<=

((l+daye.of_years_mincs_lgOO((indsx-1))) NOD 7))

--! 6. (((l+daye_of_yeare_aince_19OO((index-1))) NOD 7)

4=

e)

--! 7. (monday
<=

day_name_eor__t i¢_val ( ( ( i

+

days_of _y ears_s incs_ 1900 ( (index- 1) ) )
NOD

7)))

--l s. (

day_name_sort_tic_val ( ( ( 1

÷

days_of_years_since_ 1900 ((index-I)) )

NOD

7))
<=

sunday)

-- ! 9. (index<=the_year)
--I >>

(IF is_leap_year (the_year)

THEI (good_day_name(day_nmae_sort_increment (result. 2))

->

(day_name_sort_increment (result, 2)
Z

day_name_of (index, I)))

ELSE (good_day_name (day_name_sort_increment (result, 1))

->

(day_name_sort_increment (result, I)

day_name_of (index, 1) ) ) )

-- ! <proof>

--! AND

--I BY instantiation of lemma mod_lower in trait Z

-- I WITH 7, the_day FOR m: Int, a: Int

--I BY inetantiation of lemma mod_upper in trait Z

-- ! WITH 7, the_day FOR m: Int, a: Int

-- ! BY simplification
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--I 1. (yeara.tic_firet<index)

2. (index<=(l+the_year))

3. (result=day_name_of((index-1), 1))

4. (result

day_name_sort_tic_val((daye_of_yearl_since_19OO((index-i))
MOD

7)))

--_ s. (o

<=

((l+days_of_years_since_19OO((index-l))) NOD 7))

--! 6. (((l+days_of_years_eince_19OO((index-1))) MOD 7)
<=

6)

--! 7. (monday
<=

--!

----!

----!

A_D

(

day_name_ sort_t ic_val (( (I

+

days_of_years_since_ 1900 ((index-l)) )

MOD

7)))

--; s. (

day_name_sort_t ic_val ((( i

+

days_of _years_s ince_ 1900 ((index-l)) )

MOD

7))
<=

sunday)

-- ! 9. (index>the_year)

lO. (O<=(the_day MOD 7))

11. ((the_day NOD 7)<=6)

>> ((O<(the_day MOD 7))

--!

good_day_name(

day_name_sort_increment(result, ((the_day MOD 7)-1)))
->

(day_name_sort_increment(result, ((the_day MOD 7)-1))

day_name_of(the_year, the_day))))

<proof>
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--! D

WHILE (index<=the_year) LOOP

--I INVLRILMT (

(

((years_t ic_f irst+ I)<=index)

AND

(index<= (the_year+i)))

AND

(result=day_name_of ((index-l), i) )) ;

IF is_leap_year(the_year) THE!

increment(result, 2) ;

ELSE

increment (result, I) ;

EmD IF;

index: = (index+ I) ;

END LODP;

increment (result, natural_ize (( (the_day HOD 7)-I) )) ;

RE_RN result ;

END day_of ;

P"JNCTION day_of(the_time : IN time) P_RN year_day

--i WHERE * * *

--] IN good_time(the_time) ;

-- ] RETURN day_of_year(the_time, the_year,

the_time.the_month, the_time.the_day) ;

--D END WHERE;

--! VC Status: proved

--! BY simplification

--! BY instantiation of axiom days_since_January_O

in trait time_representations

--! WITH the_time.the_yearFOR the_year:Int

--I BY instantiation of axiom months_tic_first

in trait sort_names

--! WITH FOR

--! BY simplification

--! BY simplification

--! BY contradiction, in I

--! BY axiom good_time in trait time_representations

--! WITH the_time FOR the_time:knyRecordSort

--! substitutin 8 for left

--! BY contradiction, in I

--! BY simplification

--! BY synthesis of TRUE

--!_



112 APPENDIX E

IS

result : martial := O;

index : month;

BEGIN

index:=month_tic_first();

--! VC Status: proved

--! BY simplification

--1 BY contradiction, in 2

--{ BY axiom good_time in trait time_representations

--I WITH the_time FOR the_time:AnyRecordSort

--! substituting for left

--1 BY contradiction, in 2

--! BY simplification

--! BY synthesis of IF,

--! BY axiom days_since_January_1

in trait time_representations

--! WITH (l+index), the_time.the_year FOR the_month:

Int, the_year:lnt

--f substituting for left

--! BY instantiation of lemma days_in_month_range in trait

time_representations

--! WITH index, the_time.the_year FOR the_month:Int,

the_year:Int

--1 BY simplification

--I BY axiom Eood_month in trait time_representations

--! WITH index FOR the_month:!hi

--! substituting for left

--! BY instantiation of axiom months_tic_first

in trait 8err_names

--! WITH FOR

--! BY simplification

--! BY simplification

--! BY axiom good_year in trait time_representations

--! WITH the_time.the_year FOR the_yeax:Int

--! substituting for left

--! BY simplification

--! BY synthesis of TRUE

--! AND

--! BY instantiation of lemma days_since_January_positive

in trait time_representations

--! WITH index, the_time.the_year FOR the_month:Int,

the_year:Int

--! BY simplification
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--! BY axiom day_of_year in trait time_representations

--! WITH the_time.the_year, index, the_time.the_day

FOR the_year: Int, the_month: Int, the_month_day: Int

--! substituting for left

-- ! BY simplification

-- ! BY instantiation

of 1emma days_since_January_upper_bound

in trait time_representations

-- ! WITH index, the_time, the_year FOR the_month: Int,

the_year: Int

--! BY instantiation of axiom good_month

in trait time_representations

--1 WITH index FOR the_month:Int

--! BY instantiation of axiom good_year

in trait time_representations

-- ! WITH the_time.the_year FOR the_year: Int

--! BY instantiation of lena days_in_month_ra_e in trait

t ime_repres ent at ions

-- ! WITH the_time.the_month, the_time.the_year FOR

the_month: Int, the_year: Int

-- ! BY simplification

--1 BY synthesis of TRUE

--! []

WHILE (index<=(the_time.the_month-1)) LOOP

--I INVHRIANT (

(
(

(result=days_since_Jan(index, the_time.the_year))

AND

good_time (the_time))
AND

(months_tic_first <=index))

AND

(index<=the_t ime. the_month) ) ;

result: = (result+

natural_ize (days_in ( index, the_t ime. the_year) ) ) ;
index : =(index+l) ;

END LOOP ;

RETURR year_day_ize ((result+natural_ize (the_time. the_day))) ;

END day_of;

FUNCTION time_of(the_year : IN year;

the_day : IN year_day) RETURN time

--I WHERE * * *

--I IN good_year_and_day(the_year, the_day) ;
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--I
(

(

RETURN t SUCH THAT (

(
(

(
(t. the_year=the_year)

AND

(t. the_month=month_of (the_year, the_day) ) )

AND

(t. the_day=day_of_month(the_year, the_day)))

AND

(t. the_hour=O) )

AND

(t. the_minute=O) )

AND

(t. the_second=O) )

AND

(t. the_millisecond=O) ) ;

-- [ EI_D WHERE;

--! VC Status: proved
--! BY axiom months_tic_first in trait sor__names

-- ! WITH FOP,

--! substituting for left

--! BY axiom months_tic_last in trait sort_names

-- ! WITH FOR

--1 substituting for left

--! BY contradiction, in I

--! BY axiom good_year_and_day in trait time_representations

-- ! WITH the_year, the_day FOR the_year: Int,

the_year_day: Int

--! substituting for left

--! BY contradiction, in 1

--! BY simplification

--! BY axiom good_year in trait time_representations

-- ! WITH the_year FOR the_year: Int

--! substituting for left

--! BY simplification

--! BY axiom good_month in trait time_representations

--! WITH 1 FOR the_month:Int

--! BY 1emma days_in_month_range

in trait time_representations

--! BY analysis of FOPOLLL, in 5

-- ! WITH I, the_year FOR the_month: Int, the_year: Int
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--! BY simplification

--1 BY axiom daye_since_January_O

in trait time_representations

--I WITH the_year FOR the_year:Int

--! substituting for left

--! BY inetantiation of lena days_in_year_identity

in trait time_representations

--! WITH the_year FOR the_year: Int
--! BY instantiation of axiom months_tic_last

in trait sort_names
-- I WITH FOR

--! BY simplification

--! BY synthesis of TRUE
--l []

IS

result : year_day := the_day;

temp : time;
index : month;

BEGI_

index:=month_tic_first();

--! VC Status: proved

--! BY simplification

--! BY instantiation of lemma days_in_month_range

in trait time_representations

-- WITH index, the_year FOR the_month:Int, the_year:Int

-- BY simplification

-- BY axiom good_month in trait time_representations

-- WITH index FOR the_month:Int

-- substituting for left

-- BY simplification

-- BY axiom months_tic_first in trait sort_names

-- BY axiom months_tic_last in trait sort_names

-- BY simpliflcatlon

-- BY simplification

-- BY synthesis of IF,
-- BY instantiation of axiom month_of

in trait time_representations

--! WITH index, the_year, the_day FOR the_month:Int,

the_year:Int, the_year_day:Int
--I BY simplification

--! BY axiom day_of_month in trait time_representations

--! WITH the_year, the_day FOR the_year:Int,
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BY

BY

BY

BY

BY

BY

BY

BY

AND

BY

the_year_day: Int

--! substituting for left

-- ! simplif icat ion

--! axiom first_hour in trait sort_names

--! axiom first_minute in trait sor__names

--! axiom first_second in trait sort_names

--! axiom first_millisecond in trait sort_names

-- ! simplification

-- ! s implif icat ion

--! synthesis of TRUE

----!

----! instantiation of axiom days_since_January_l

in trait time_representations

--i VITH (l+index), the_year FOR the_month:Int,

the_year:Int

--! BY simplification

--! BY synthesis of TRUE

--i[]
WHILE (index<=month_tic_last()) LOOP

--[ INVARIANT (

(

(

((days_since.Jan(index, the_year)+result)=the_day)

AND

(

(

(months_tic_first<=index)

AND

(index<=months_tic_last))

AND

good_year(the_year)))
AND

(result>O))

AND

(

the_day
<=

(

days_since_ Jan (months_t ic_last, the_year)

+

days_in_month(monthe_tic_last, the_year))));

IF (result<=year_day, ize(days_in(index, the_year))) THEN

temp.the_year:=the_year;

temp.the_month:=index;
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temp. the_day: =day_ize (result) ;

temp. the_hour: =hour_tic_first () ;

temp. the_minute : =minute_tic_first () ;

temp.the_second: =second_tic_first() ;

temp. the_millis econd: =millisecond_tic_first () ;

RETURN temp;

ELSE

result : = (result-year_day_ize (days_in (index, the_year) ) ) ;

END IF;

index: = (index+ 1) ;

LOOP;

RAISE lexical_error;

END time_of;

FUNCTION period_of(the_time : IN time) RETUPJ period

-- WHERE

-- GLOBAL noon : IN ;

-- IN (noon=t2) ;

-- IN good_time(the_time) ;

-- RETU_ (IF (the_time.the_hour<12) THEN am ELSE pro);

-- END WHERE;

-- VC Status: proved

--, BY simplification

--' BY synthesis of TRUE

-- []

IS

BEGIN

IF (the_tine.the_hour>=noon) THEN

RETURN pm;
ELSE

RETU_ am;

END IF;

END period_of ;

FUNCTION time_of(the_time : IN time) RETURN calendar.time

-- l WHE_

-- J GLOBAL seconds_per_hour, seconds_per_minute,

milliseconds_per_second: IN ;

-- [ IN good_time(the_time) ;

-- [ RETURN time_to_cal_time(the_time) ;

--[ END WHERE;

--! VC Status: ** not proved **

--! BY contradiction, in 1
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--! BY axiom good_time in trait time_representations

-- ! WITH the_time FOR the_time:AnyRecordSort

--! substituting for left

--I BY contradiction, in 1

--! BY analysis of AND, in |

--! BY instantiation of lemma days_in_month_ranEe

in trait time_representations

-- ! WITH the_time.the_month, the_time, the_year FOR

the_month: In!, the_year: In!

--! BY simplification

--I BY axiom good_year in trait time_representations

-- ! WITH the_time, the_yes_r FOR the_year: In!

--! substituting for left

--! BY axiom good_month in trait time_representations

-- ! WITH the_time, the_month FOR the_month: In!

--! substituting for left

--! BY axiom good_month_day in trait time_representations

-- ! WITH the_time, the_day FOR the_month_day: In!

--I substituting for left

--! BY simplification

--! BY claiming (

days_in_month(the_t ime. the_month, the_time.the_year)

31)

--! BY

--! THEM

--1 BY

--! 1.

--1 2.

--! 3.

--! 4.

--! 5.

--! 8.

<=

hypothesis

simplification

(1901<=(the_time.the_year))

((the_time.the_year)<=2099)

(O<(the_time.the_month))

((the_time.the_month)<=12)

(O<(the_time.the_day))

((the_time.the_day)

days_in_month((the_time.the.month), (the_time.the_year)))

-- 7. (O<=(the_time.the_hour))

-- 8. ((the_tile.the_hour)<days_to_hours)

-- 9. (O<=(the_time.thejninute))

-- %0. ((the-time'the-minute)<h°ure-t°-minutes)

-- 11. (O<=(the_time.the_eecond))

-- 12. ((the_time.the_second)<ainutes_to_secondm)

-- 13. (O<=(the_time.the_sillisecond))

--_ 14. ((the.time.the_illisecond)

<
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seconds_to_milliseconds)

--! is. (

days_in_month((the_time.the_month), (the_time.the_year))

<=

31)
--t 16.

good_duration(
seconds_to_duration(((the_time.the_millisecond)

/
milliseconds_per_second)))

--! 17.

good_duration(seconds_to_duration((the_time.the_second)))

--1 18.

good_duration(

seconds_to_duration(((the_time.the_minute)

seconds_per_minute)))

--! 19.

good_duration(

seconds_to_duration(((the_time.the_hour)

seconds_per_hour)))

--! 20.

good_duration((
seconds_to_duration(((the_time.the_minute)

seconds_per_minute))

+

seconds_to_duration(((the_time.the_hour)

seconds_per_hour))))

--! 21.

good_duration(((

seconds_to_duration(((the_time.the_hour)

seconds_per_hour))

+

seconds_to_duration(((the_time.the_minute)

seconds_per_minute)))

+

sec°nds-t°-durati°n((the-time'the-sec°nd))))
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--! 22.

good_duration((((

seconds_to_duration(((the_time.the_hour)

seconds_per_hour))

+

seconds_to_duration((the_time.the_second)))

seconds_to_duration(((the_time.the__inute)

seconds_per_minute)))

seconds_to_duration(((the_ti_e.the_millisecond)

/

milliseconds_per_second))))

--_ >> (

good_date((the_time.the_year),

(the_time.the_month),

(the_time.the_day),

(((
seconds_to_duration(((the_time.the_hour)

seconds_per_hour))
+

seconds_to_duration((the_time.the_second)))

+

+

seconds_to_duration(((the_time.the_minute)

seconds_per_minute)))

AND

(

seconds_to_duration(((the_time.the_millisecond)

/

_illiseconds_per_second))))

time_of((the__ime._he_year),

(the_time.the_month),

(the_time.the_day),

(((
seconds_to_duration(((the_time.the_hour)
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--!

IS

seconds_per_hour) )

+

seconds_to_duration((the_t ime. the_second) ))

s • c onds_t o _durst ion ( ( (the_t ime. the_minut e)

s • c onds_p er_minut e ) ) )

seconds_to_duration(((the_time.the_millisecond)

/

milliseconds_per_second))))

time_to_cal_time(the_time)))

<proof>

[]

BEGIM

KETUPJ calendar.time_of(year_number_ize(the_time.the_year),

month_number_ize(the_time.the_month),

day_number_ize(the_time.the_day),

(
(

(
calendar.day_duration_ize((

integer_ize(the_time.the_hour)*

seconds_per_hour))+

calendar.day_duration_ize((

integer_ize(the_time.the_minute)e

seconds_per_minute)))+

calsndar'day-durati°n-ize(the-time'the-sec°nd))+

calendar.day_duration_ize((the_time.the_millisecond/

milliseconds_per_second))));

EED tins_of ;

FUNCTIOi time_of(the_time : 11 calendar.tine) RETUIt]i tine

-- I WHERE

--[ GLOBAL seconds_per_hour, seconds_per_mlnute,

milliseconds_per_second : I| ;
--[ RETURN cal_tims_to_time(the_time);
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-- I END WHER_;

--! VC Statue: hidden

--! []

IS

result : time;

total_duration : calendar.day_duration;

seconds : natural;

the_year : year;

the_month : month;

the_day : day;

BEGIN

calendar, split (the_time,

the_year,

the_month,

the_day,

total_duration) ;

-- To mollify our aggressive aliasing checks;

result, the_year: =the_year;

result, the_month: =the_month;

result, the_day: =the_day;

--! PRECONDITION = (good_duration(total_duration)
AND

( ( (0<= (Floor (total_duration)/seconds_per_hour) )

AND

( (Floor (total_durat ion)/e econds_per_hour) <24) )

AND

C((o

((Floor(total_duration) MOD seconds_per_hour)

/
seconds_per.minute))

AND

(((Floor(total_duration) MOD seconds_per_hour)

/

seconds_per_minute)

<

eo))
AND
(((o

<=

((Floor(total_duration) NOD seconds_per_hour)

MOD
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seconds_per_minute))
AMD

(((Floor(total_duration) MOD seconds_per_hour)

MOD

seconds_per_minute)

<

60))
AND

(good_duration(total_duration)

AND

((good_duration(RealPart(total_duration))

AND

good_duration((RealPart(total_duration)

milliseconds_per_second)))

->

(((((result[.the_hour

=>(Floor(total_duration)

/

seconds_per_hour)])[.the_minute

=>((Floor(total_duration)

MOD

seconds_per_hour)

/

seconds_per_minute)])[.the_second

=>((Floor(total_duration)

MOD

seconds_per_hour)

M0D

seconds_per_minute)])[.the_millisecond
=>

Floor((lO00

$

(RealPart (total_duration)

milliseconds_per_second)))])

cal_t:ime_to_t:imeCthe_time))))))));

seconds:=duration_utilities.floor(total_duration);

rssult.the_hour:=hour_izs((seconds/ssconds_per_hour));

seconds:=(seconds M0D seconds_per_hour);

result'the-linute:=minute-ize((sec°nds/sec°nds-per-minute));

result.the_second:=second_ize((seconds MOD
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seconds_per_minute));

result.the_millisecond:=millisecond_ize((

duration_utilities.real_part(total_duration)*

milliseconds_per_second));

RETURN result;

END time_of ;

FUNCTION duration_of(the_interval : IN interval) REIqJRN builtin

•duration

--i WHERE

--l GLOBAL seconds_per_day, seconds_per_hour,

seconds_per_minute : IN ;

-- I| (seconds_per_hour=hours_to_seconds);

-- IN (seconds_per_minute=minutes_to_seconds);

-- I| (seconds_per_day=days_to_seconds);

-- IN good_interval(the_interval);

-- RETURN interval_to_duration(the_interval);

-- RETURN result SUCH THAT good_duration(result);

-- END WHERE;

-- VC Status: proved

-- BY axiom Int_identity in trait Z

-- WITH (the_interval.elapsed_days*days_to_seconds)

FOR n:Int

--! substituting for left

--I BY lemma seconds_to_duration in trait sort_names

--! WITH (the_interval.elapsed_days*seconds_per_day)

FOR ths_sscond:Int

--! substituting for left

--! BY simplification

--! BY instantiation of lemma good_duration_pair

in traittime_representation_conversions

--! WITH (seconds_per_day*the_interva/.elapsed_days), i

FOR n:Int, d:Int

--! BY simplification

--! BY axiom good_second in trait sort_names

--! WIN (the_interva/.elapsed_millieeconds/lO00) FOR

the_second:Int

--! substituting for left

--! BY instantiation of axiom good_interval

in trait sort_names

--! WITH the_interval FOR the_interval:inyRecordSort

--! BY contradiction, in 4

--! BY left substitution of 7

--! BY contradiction, in 4

--I BY analysis of AND, in 4
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--! BY instantiation of aliom good_millisecond

in trait sort_names

--! WITH the_interval.elapsed_milliseconds FOR

the_millisecond:Int

--t BY contradiction, in 11

--! BY left substitution of 12

--! BY contradiction, in 11

--! BY claiming ((the_interval.elapsed_milliseconds/lO00)=O)

--! BY 1emma div_upper in trait Z

--! WITH the_interval.elapsed_milliseconds, 1000 FOR

a:Int, m:Int

--! substituting for left

--! BY hypothesis

--! THEN

--! BY simplification

--! BY synthesis of TRUE

--!D

IS

tsmp : builtin.duration;

BEGIN

temp:=builtin.duration_izs((

integer_ize(ths_intsrval.elapssd_days)*seconds_per_day));

--! VC Status: proved

--! BY lemma pair_minus in trait fixed_point

--! WITH

(

Int_identity((the_interval.elapsed_days*days_to_seconds))

+

Int_identity(

(the_intsrval.elapsed_hours*hours_to_seconds))), 1,

(the_interval.elapsed_hours*seconds_per_hour), I FOR nl:

Int, d1:Int, n2:Int, d2:Int

--I substituting for left

--! BY axiom Int_identity in trait Z

--! WITH

__!

Int_identity((ths_interval.elapsed_days*days_to_seconds))
+

Int_identity(

(the_intsrval.elapsed_hours*hours_to_seconds))) FOR n:
Int

substituting for left
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--I BY axiom Int_identity in trait Z

--J WITH (the_interval.elapsed_houre*seconds_per_hour)

FOR n: Int

--! substituting for left

--t BY axiom Int_identity in trait Z

-- I WITH (the_interval. elapsed_hours*hours_to_seconds)

FOR n: Int

--! substituting for left

--! BY axiom Int_identity in trait Z

--I WITH (the_interval.elapsed_days*days_to_seconds)

FOR n:Int

--! substituting for left

--! BY contradiction, in I

--! BY axiom Int_identity in trait Z

--! WITH (the_interval.elapsed_days*days_to_seconds)

FOR n: Int

--! substituting for left

--! BY contradiction, in I

--! BY simplification

--! BY synthesis of TRUE

--! []

--[ ASSERT (

(

(

temp

pair(

Int_identity (

(the_interval. elapsed_days*days_to_seconds)), 1) )

AND

good_interval (the_interval))
A_D

(

(

good_duration (temp)
AND

(

good_interval(the_interval)

AND

good_second(

(the_int erval, elaps ed_millis econds / iOO0) )))

AND

(

(seconds_per_hour=hours_to_seconds)
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AND

(seconds_per_minut e=minut es_to_e econds) ) ) ) ;

--! USE lemma subtract_duration_equals IN TRAIT

t ime_repres enter ion_convers ions

WITH

temp,

pair(

(
Int_idsntity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_oeconds))),

1).
pair((the_interval.elapeed_hours*seconds_per_hour), 1)

FOR

m:knyRecordSort, n:AnyRecordSort, p:AnyRecordSort

--! substituting for left;

--! USE lemma good_duration_pair IN TRAIT

time_representation_conversions

WITH

(the_interval.elapsed_hours*seconds_per_hour), 1

FOR

n:Int, d:Int;

--! USE lemma good_duration_sum IN TRAIT

time_representation_conversions

--!

WITH

temp,

pair((the_interval.elapsed_hours*seconds_per_hour), 1)

FOR

dl:AnyEecordSort, d2:fnyRecordSort;

USE lemma seconds_to_duration IN TRAIT sort_names

WITH --

(the_interval.elapsed_hours*seconds_per_hour)

FOR

the_eecond:Int

--! substituting for left;

temp:=(temp+

builtin.duration_ize((

integer_ize(the_interval.elapsed_hours)*
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seconds_per_hour)));

--! VC Status: proved

--I BY lemma pair_minus in trait fixed_point

--! WITH

(

Int_identity(

(the_interval.elapsed_daye*days_to_seconds))

+

Int_identity(

(the_interval.elapsed_hoursehours_to_seconds)))
+

Int_identity(

(the_interval.elapsed_minutes*minutes_to_seconds))),

1o (the_interval.elapsed_minutes*seconds_per_minute), 1

FOR nl:Int, dl:Int, n2:Int, d2:Int

--f substituting for left

--I BY axiom Int_identity in trait Z

--! WITH

(

Int_identity(

(the_interval.elapsed_days*days_to_seconds))
+

Int_identity(

(the_interval.elapsed_hours*houre_to_seconds)))
+

Int_identity(

(the_interval.elapsed_minutes*minutes_to_seconds)))

FOR n:Int

--! substituting for left

--! BY axiom Int_identity in trait Z

--! WITH

(the_interval.elapsed_minutes_seconds_per_minute) FOR n:Int

--! substituting for left

--! BY axiom Int_identity in trait Z
--! WITH

(the_interval.elapsed_minutes$minutes_to_seconds) FOR n:Int

--! substituting for left

--! BY axiom Int_identity in trait Z

--! WITH (the_interval.elapsed_hours*hours_to_ssconds)

FOR n:Int

--I substituting for left

--1 BY axiom Int_identity in trait Z
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--! WITH (the_interval.elapsed_days*days_to_seconds)

FOR n:Int

--! substituting for left

--! BY contradiction, in I

--! BY axiom Int_identity in trait Z

--! WITH (the_interval.elapsed_days*days_to_seconds)

FOR n:Int

--! substituting for left

--! BY axiom Int_identity in trait Z

--! WITH (the_interval.elapsed_hours*hours_to_seconds)

FOR n:Int

--! substitutin E for left

--! BY simplification

--! BY synthesis of TRUE

--!D

--I ASSERT (
(

(

temp
Z

pair(

(

Int_identity(

(the_interval.elapsed_days*days_to_soconds))

Int_identity(

(the_interval. elapsed_hours*hours_to_seconds) )),

I))

AND

good_interval (the_interval))

AND

(

(

good_dur at ion (temp )

AND

(s econds_per_minut e=minut es_to_s econds))

AND

(

good_interval (the_interval)

AND

good_ second (

(the_interval. elapsed_milliseconds/iO00) ) ))) ;

--I USE lemma subtract_duration_equals IN TRAIT

t ime_repres entat ion_convers ions
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--!

WITH

temp,

pair(

(

(

+

Int_identity(

(the_interval.elapsed_days*daye_to_seconds))

Int_identity(

(the_interval.elapeed_hours*hours_to_eeconds)))

Int_identity(

(

the_interval.elapsed_minutes

minutes_to_seconds))), 1),

pair(

(the_interval.elapsed_minutes*seconds_per_minute),

1)

FOR

m:AnyRecordSort, n:AnyRecordSort, p:AnyRecordSort

eubstitutin E for left;

PRECOIDITI01 = (good.duration(temp)

AND

(good_duration(temp)
AND

((((temp

+

pairCC(the_interval.elapsed_minutes)

seconds_per_minute),

I))

pair(((

Int_identity(((the_interval.elapsed_day.)

days_to_seconds))

+

Int_identity(((the_interval.elapsed_hours)
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hours_to_seconds)))

Int_ident ity ( ( (the_interval. elapsed_minutes)

minutes_to_seconds))),

1))

A_D

good_ in! erval (the _ in! erval) )

AID

(good_interval (the_interval)

AID

good_second(((the_interval.elapsed_milliseconds)

/
1ooo))))));

--! USE lem_ma good_duration_pa_r IN TPOk_T

time_representation_conversion_

WITH

(the_interval.elapsed_minutes*seconds_per.minute), I

FOR

n:Int, d:Int;

--! USE lena good_duration_sum I| TRAIT

time_representation_conversions

--!

WITH

temp,

pair(

(the_interval.elapsed_minutes*seconds_per_minute),

1)

F0R

dl:AnyRecordSort, d2:lnyRecordSort;
USE leJnua seconds_to_duration IN TRAIT sort_names

WITH

(the_interval.elapsed_minutes*seconds_per_minute)

FOR

the_second:Int

--! substituting for left;

temp:=(temp+

builtin.duration_ize((

integer_ize(the_interval.elapsed_minutes)*

seconds_per_minute)));
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--! VC Status: proved

--! BY lemmapair_minus in trait fixed_point

--! WITH

(
(

4-

Int_identity(

(the_interval.elapsed_days*daya_to_aeconds))

Int_identity(

(the_interval.elapsed_hours*houra_to_seconds)))

Int_identity( _

(the_interval.elapsed_minutee*minutes_to_seconds)))
4-

Int_identity(the_interval.elapsed_seconds)), l,

the_interval.elapsed_seconds, 1 FOR nl:Int, dl:Int, n2:

Int, d2:Int

--l substituting for left

--! BY axiom Int_identity in trait Z
--! WITH

Int_identity(

(the_interval.elapsed_days$days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconds)))

Int_identity(

(the_interval.elapsed_minutes*minutes_to_seconds)))

Int_identity(the_interval.elapsed_seconds)) FOR n:Int

--! substituting for left

--! BY axiom Int_identity in trait Z

--! WITH (the_interval.elapsed_days*days_to_seconds)

FOR n:Int

--! substituting for left

--! BY axiom Int_identity in trait Z

--! WITH (the_interval.elapsed_hoursshours_to_seconds)

FOR n:Int

--! substituting for left

--! BY axiom Int_identity in trait Z
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--! WITH

(the_interval.elapsed_minutes*minutes_to_seconds) FOR n:Int

--! substituting for left

--! BY axiom Int_identity in trait Z

--! WITH the_interval.elapsed_seconds FOR n:Int

--! substituting for left

--! BY contradiction, in I

--! BY axiom Int_identity in trait Z

--! WITH (the_interval.elapsed_days*days_to_seconds)

FOE n:Int

--! substituting for left

--! BY axiom Int_identity in trait Z

--I WITH (the_interval.elapsed_hours*hours_to_seconds)

FOR n:Int

'--! substituting for left

--I BY axiom Int_identity in trait Z

--t WITH

(the_interval.elapsed_minutes*minutes_to_seconds) FOR n:Int

--! substituting for left

--! BY simplification

--! BY synthesis of TRUE

--!O

--I ASSERT (

(

(

t emp
z

pair(

(
(

AND

Int_identity(

(the_interval.elapsed_days*days_to_ssconds))

Int_identity(

(the_interval.elapssd'hours*hours_to_seconds)))

Int_identity(

(

the_interval.elapsed_minutes

*

minutes_to_seconds))), I))

(good_interval(the_interval) AND good_dura_ion(temp)))

AND
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(

good_interval(the_interval)

AND

good_second((the_interval.elapsed_milliseconds/lO00))));

--! USE lemma subtract_duration_equals I| TRAIT

tiBe_representation_conversions

WITH

temp.

pair(

(
(

(
Int_identity(

(the_interval.elapsed_days*days_to_seconds))
+

Int_identity(

(

the_interval.elapsed_hours

hours_to_seconds)))

+

Int_identity(

(
the_interval.elapsed_minutes

minutes_to_seconds)))
+

Int_identity(the_interval.elapsed_seconds)), 1),

pair(the_interval.elapsed_seconds, I)

FOR

m:AnyRecordSort, n:AnyRecordSort, p:anyRecordSort

--! substituting for left;

--! USE lsmma good_duration_pair II TRAIT

time_representation_conversions

WITH the_interval.elapsed_seconds, ! FOR n:int, d:Int;
<statement>

--! USE lemma good_duration_sumIE TRAIT

time_representation_conversions

WITH

temp, pair(the_interval.elapsed_seconds, I)

FOR

dl:AnyRscordSort, d2:AnyEscordSort;
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--I USE lemma seconds_to_duration II TP_IT sort_names

WITH the_interval.elapsed_seconds FOR the_second:Int

--| substitutinEfor left;

temp:=(temp+

builtln.duration_ize(the_interval.elapsed_seconds));

--! VC Status: *$ not proved **

--! BY left substitution of i

--I BY axiom Int_identity in trait Z

WITH--!

(

Int_identity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconds)))

Int_identity(

(the_interval.elapsed_minutes*minutes_to_aeconds)))

Int_identity(the_interval.elapsed_seconds)) FOR n:Int

--! substituting for left

--I BY axiom Int_identity in trait Z

--! WITH

Int_identity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_houra*hours_to_seconds)))

Int_identity(

(
the_interval.elapsed_minutes

minutes_to_seconds)))

Int_identity(the_interval.elapsed_seconds))
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1ooo)
+

Int-identity(the_interval.elapsed_milliseconds)) FOR n:
Int

--! substituting for left

--! BY claiming (

Int_identity(

((the_interval.elapsed_milliseconds/lO00),lO00))

Int_identity(the_interval.elapsed_milliseconds))

--! BY axiom Int_identity in trait Z

--! WITH

((the_interval.elapsed_milliseconds/lO00)*lO00) FOR n:Int

--!

----!

substituting for left

BY axiom Int_identity in trait Z

WITH the_interval.elapsed_milliseconds FOR n:Int

substituting for left

I. (temp

pair((((

Int_identity(((the_interval.elapsed_days)

days_to_seconds))

÷

Int_identity(((the_interval.elapsed_hours)

hours_to_seconds)))

Int_identity(((the_interval.elapsed_minutes)
$

minutes_to_seconds)))

+

Int_identity((the_interval.elapsed_seconds))),
1))

--! 2. good_interval(the_interval)

--! 3. good_duration(temp)

--! 4.

good_second(((the_interval.elapsed_milliseconds)/lO00))

--! >> ((((the_interval.elapsed_milliseconds)/lO00),lO00)

(the_interval.elapsed_milliseconds))
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--! <proof>
--! THEN

--! BY claiming (

pair(

(

--!

----!

(

In__identi_y(

(the_interval.elapsed_days*daye_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconde)))

Int_identity(

(the_interval.elapsed_minutes*minutes_to_eeconds)))

Int_identity(the_interval.elapsed_seconds)), 1)

pair(

(
(

+

Int_identity(

(the_interval.elapsed_days*days_to_se¢onds))

Int_identity(

(the_interval.elapsed_houre*hours_to_eeconds)))

Int_identity(

(

the_iuterval.elapsed_minutes

minutes_to_seconds)))

Int_identity(the_interval.elapsed_seconds))

looo), tooo))
BY lemma concrete_equality_pair

in trait fixed_point

WITH

(

(
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Int_identity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconds)))

Int_identity(

(the_interval.elapsed_minutes*minutes_to_seconds)))

Int_identity(the_interval.elapsed_seconds)), 1,

+

Int_identity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconds)))

Int_identity(

(the_interval.elapsed_minutes*minutes_to_seconds)))

Int_identity (the_interval. elapsed_seconds))

1000), 1000 FOR nl:Int, dl:Int, n2:Int, d2:Int

--! substituting for left

--! BY synthesis of TRUE

-- ! THER

--! BY left substitution of 5

-- ! BY simplification

--! BY synthesis of TRUE

--! []

--) ASSERT (

(

(
temp

pair(

(
(
(

Int_identity(
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the_interval.elapsed_days

days_to_seconds))

Int_identity(

{
the_interval.elapsed_hours

hours_to_seconds)))

Int_identity(

(

the_interval.elapsed_minutes

minutes_to_seconds)))

Int_identity(the_interval. elapsed_seconds)), 1))

AND

good_int erval (the_interval))

AID

go od_durat ion (t emp ) )

AND

good_second( (the_interval. elapsed_milliseconds/1000) ) ) ;

--! USE lemma pair_minus IW TRAIT fixed_point

WITH

(
(

(

Int_identity(

(

the_interval.elapsed_days

days_to_seconds))

Int_identity(

(
the_interval.elapsed_hours

hours_to_seconds)))



140 APPENDIX E

Int_identity(

(
the_interval.elapsed_minutes

$

m_lutes_to_ae¢onds)))

Int_identity(the_iuterval.elapsed_seconds))

looo):

Int_identity(the_interval.elapsed_milliseconds)),

1000, (the_interval.elapsed_ailiiseconds/1000), 1

F0_

nl:Int° dl:Int, n2:Int, d2:Int

--! substituting f0r left;

--! USE leBa subtract_duration_equals IN TRAIT

t_e_representation_conversions

WITH

temp,

pair(

(
(

C
(

(

÷

Int_identity(

(

the_interval.elapsed_days

days_to_seconds))

Int_identity(

( ....

the_interval.elapsed_hours

hours_to_seconds)))

Int_identity(

(
the_interval.elapsed_minutes

minutes_to_seconds)))
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--!

+

Int_identity(the_interval.elapsed_seconds))

1ooo)
#

Int_identity(the_interval.elapsed__illiseconds)),

looo)o

pair((the_interva_.elapsed_milliseconds/%000), 1)

FOR

m:£nyRecordSort, n:LuyRecordSort, p:£nyRecordSort

substituting for left;

USE lemma seconds_to_duration I| TB£IT sort_names

WITH

(the_interval.elapsed_milliseconds/lO00)

FOR

the_second:Int

--! substituting for left;

--! USE axiom good_seconds_to_good_duration IN TRAIT

time_representation_conversions

WITH

(the_interval.elapsed_milliseconds/lO00)

FOR

the_eecond:Int;

--! USE lemma good_duration_sum IB TRAIT

time_representation_conversions

WITH

temp,

seconds_to_duration(

(the_interval.elapsed_milliseconds/lO00))

FOR

d1:knyRecordSort, dR:AnyRecordSort;

--! USE axiom Int_identity IW TRAIT Z

WITH

Int_identity(

(the_interval.elapsed_days*days_to_seconde))



142 APPENDIX E

--!

+

Int_identity(

(
the_interval, olapsed_hours

hours_to_seconds)))

+

Int_identity(

(

the_interval, elaps od_minut es
$

minutes_to_seconds)))

÷

Int_identity(_he_interval.elapsed_soconds))

$ • _.

I000) FOR n:Int

substituting for le_t;

PRECONDITION = (

good_duration(

seconds_to_duration(((the_interval.elapsed_milliseconds

)

/

iooo)))

((good_duration(temp)
AND

good_duration(

seconds__o_duration(

(

(the_interval.elapsed_milliseconds)

/

iooo))))
AND

(

good_duration((_emp

+

->

seconds_to_duratlon(

(

(the_interval.elapsed_milliseconds)

/
iooo))))
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(good_interval(the_interval)
AND

((temp

$

seconds_to_duration(

(

(the_interval.elapsed_milliseconds)

/

iooo)))

pair((

Int_identity(((((

Int_identity(

((the_interval.elapsed_days)

days_to_seconds))
+

Int_identity(

((the_interval.elapsed_hours)

hours_to_seconds)))

+

Int_identity(

((the_interval.elapsed_minutes)

minutes_to_seconds)))

Int_identity(

(the_interval.elapsed_seconds)))

_ooo))
÷

Int_identity(

(the_interval.elapsed_milliseconds))),

tooo))))));
temp:=(temp+

builtin.duration_ize((the_interval.elapsed_millieeconds/

tOO0)));
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--! USE lesma pair_plus IN TRAIT fixed_point

WITH

Int_identity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconds)))

Int_identity(

the_interval.elapsed_minutes
$

minutes_to_seconds)))

Int_identity(the_interval.elapsed_seconds)), 1,

the_interval.elapsed_milliseconds, 1000

FOR

nl:Int, dl:Int, n2:Int, d2:Int

--! substituting for left;

--! USE axiom Int_identity IN TRAIT Z

WITH

÷

Int_identity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconds)))

Int_identity(

(

the_interval.elapsed_minutes

minutes_to_seconds)))

FOR

n:Int

--! substituting for left;
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--! USE lemma pair_plus IN TRAIT fixed_point

WITH

+

Int_identity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconds)))

Int_identity(

(
the_interval.elapsed_minutes

minutes_to_seconds))), 1,

the_interval.elapsed_seconds, 1

FOR

nl:Int, dl:Int, n2:Int, d2:Int

--! substitutinE for left;

--1 USE axiom Int_identity IN TRAIT Z

WITH

Int_identity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconde)))

FOR

n:Int

--! substituting for left;

--! USE lemma pair_plus IN TRAIT fixed_point

WITH

Int_identity(

(the_interval.elapsed_days*days_to_seconds))

Int_identity(

(the_interval.elapsed_hours*hours_to_seconds))),
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I, (the_interval.elapsed_minutes*minutee_to_seconds),
1

FOR

nl:Int, dl:Int, n2:Int, d2:In$

--! substituting for left;

--! USE lemma pair_plus I| TRAIT fixed_point

W_TH_

(the.interval,eiapsed_days*daye_to_eeconds), i,
(the_interval.eiapsed_houre_hourm_to_seconds), i

FOR .... _

nl:Int, dl:Int, n2:Int, d2:Int

--! substituting for left;
--! USE axiom s_conds_to_milliseconds IT TRAIT

conversion_factors

--! substitutin E for left;

--1 USE lemma divides_pi IN TRAIT fixed_point

WITH

the_Interval.elapsed_milliseconde, i,
seconds_to_milliseconds FOR n:Int, d:Int, i:Int

--1 substituting for left;
--! USE lemma seconds_to_duration IN TRAIT sort_names

--I

--I

WITH

(the_interval.elapsed_days*days_to_seconds)

FOR

the_second:Int

substituting for left;

USE 1emma seconds_to_duration IN TR£IT sort_n_umes

WITH

(the_intsrva/.elapsed_hours*houls_to_seconds)

FOR

the_se_ond:Int

substituting for left;

USE lemma seconds_to_duration IN TRAIT sort_names

WITH

(the_interval.elapssd_minutes*minutes_to_seconds)
FOR

the_second:Int

substituting for left;
USE lemma seconds_to_duration I| TRAIT sort_names
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WITH the_interval, elapsed_seconds FOR the_second: Int

--! substituting for left;

--t USE le_ma seconds_to_duration I| TRAIT sort_naaes

WITH the_interval, elapsed_milliseconds FOR the_second: Int

--! substituting for left;

--! USE axiom interval_to_duration I| TRAIT

t ime_r epres ent at ion_cony ers ions

WITH the_interval FOR the_interval:AnyRscordSort

--! substituting for left;

--! SIMPLIFIED PKEC01DITIOI;

--! USE axiom good_interval_to_good_duration II TRAIT

time_representation_conversions

WITH

the_interval, temp
FOR

the_int erval : tuyRecordSort, the_duration: £nyRecordSort;

--! PRECONDITION = ((tsmp
Z

interval_to_duration(the_interval) )

IED

good_durst ion (t emp) ) ;

RETURN t emp;

END duration_of ;

FUNCTION interval_of(the_duratlon : IN builtin.duration) RETURN

interval

-- I WHERE

-- ] GLOBAL seconds_per_day, seconds_per_hour,

seconds_per_minute: IN ;

--[ IN good_duration(the_duration) ;

-- [ RETURJ[ duration_to_interval(the_duration) ;

-- [ END WHERE;

--! VC Status: hidden

--, []

IS

result : interval;

the_seconds : builtin.duration := the_duration;

BEGII

rssult.elapsed_days:=duration_utilities.floor((the_seconds/

seconds_per_day));

the_seconds:=(the_seconds -

builtin.duration_ize((integer_ize(result.elapsed_days)*
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seconds_per_day)));

rssult.elapsed_hours:=hour_ize(duration_utilities.floor((

the_seconds/seconds_per_hour))); °

the_seconds:=(the_seco_s- _

builtin.duration_ize((integer_ize(result.eiapsed_houre)*

seconds_per_hour)));

rssult.elapsed_minutss:=minute_ize(duration_utilities.floor((

the_seconds/seconds_per_minute)));

the_seconds:=(ths_ssconds-

builtin.duration_ize((integer_ize(result.elapsed_minutes)*

seconds_per_minute))); ..... :- =

result.elapKed_seconds:=

second_ize(duration_utilities.floor(the_seconds));

the_seconds:=(the,seconds-

builtin.duration_ize(result.elapsedlssconds));

--! PRECOFOITION = (((Int_to_fixnum(O)<=(the_ssconds*1000))

--> - . _

(O<=Floor((the_seconds*1000))))

->

(good_duration(the_seconds)

AND

($ood_duration((the_seconds*iO00))

->

(((0<=Floor((the_seconds*1000)))

AND

(Floor((the_seconds*lO00))<1000))

AND

((result[.elapsed_milliseconds=>

Floor((the_seconds*1000))])

durat ion_to_int erval (the_durat ion) ) ))) ) ;

--! IMSTANTIATE lemma floorl IN TRAIT fixed_point

VITH (the_seconds*lO00) FOR m:AnyRecordSort;

result.elapsed_milliseconds:=

millisecond_ize(

duration_utilities.floor((the_seconds*1000)));

RETURN result;

END interval_of;

END calendar_utilities;
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